Abstract Vertical farming is an emerging area of food production that aims to provide sustainable intensification of agriculture by maximising the obtainable yield per unit area of land. This approach commonly utilises stacked horizontal levels of crop growth in glasshouse or controlled environment (CE) facilities. Vertical farming has, however, received relatively little scientific investigation to date. Consequently, important factors such as economic feasibility, system design and optimisation of production methods are still being evaluated. Vertical farming methods bring additional considerations for the effective management of pests and diseases compared with conventional protected horticulture, such as movement of both pest and beneficial insects between growth levels. This article aims to provide a perspective on the positive and negative issues facing pest and disease control in Vertical farming systems. We highlight important considerations for system optimisation and areas for future investigation.
Abstract Cacoecimorpha pronubana (Hübner, [1799]) and Epiphyas postvittana (Walker, 1863) are economically important polyphagous pest species. The larvae of these moths affect a wide range of horticultural crops. We evaluated the seasonal abundance and population dynamics of these two species, hypothesising that both species of moth exhibit similar patterns in their seasonal abundance and respond to abiotic factors. The study was carried out on a wide range of protected ornamental crops grown on a total area of 1 ha at a commercial nursery. The study was completed over five consecutive years from 2015 to 2019, where both populations were monitored weekly during the months of moth activity, from April to November, using sex pheromone traps to trap the males of both species. The timing and abundance of catches were analysed in relation to local meteorological data. The mean yearly abundance of adult males was 604 ± 23.89 (mean ± SE; C. pronubana ) and 1706 ± 167.18 ( E. postvittana ) also differing significantly between years for both species. There was no influence of any weather measures on the abundance of E. postvittana , but sunshine duration (4.84 ± 0.26 hr) and temperature (13.04 ± 0.57°C) affected the mean seasonal abundance of C. pronubana . There was an overall difference in the seasonal pattern of abundance between the species studied. While we demonstrate a seasonal abundance difference between years for C. pronubana , we found no significant seasonal differences for E. postvittana . Improved understanding of seasonal abundance, phenological patterns and inter‐seasonal variations in population dynamics of these two species may be useful in developing forecasting models that can be used in improving integrated pest management strategies for these two pests.
Abstract Many species of thrips (Thysanoptera) in the family Thripidae form mating aggregations, but the adaptive significance of these aggregations and the extent of male and female mate choice is poorly understood. We studied the mating behaviour of the bean flower thrips Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), which forms male aggregations and occurs across sub-Saharan Africa. We tested whether males choose mates by female age or mating status. No-choice mating bioassays with one male and one female were used to simulate the way males usually encounter only one female at a time in aggregations in the field. Virgin females violently resisted mating attempts by males, but we found no compelling evidence to establish whether this was indiscriminate or was screening suitable males. Younger males (1–2 days old) did not discriminate females by age (1–2 or 7–10 days old), but older males (7–10 days old) avoided mating with older females. Any male choice by female mating status (virgin or mated) was weak or absent. The mating behaviour of M. sjostedti shows broad similarities with that of other thrips species that form aggregations, but also shows some distinct and novel differences, which can help our understanding of the adaptive significance of aggregations.
Cabbage stem flea beetle (CSFB) is an economically important pest of oilseed rape crops that has been responsible for substantial yield losses in recent years, particularly since the restrictions on neonicotinoid seed treatment use came into force in 2013. To effectively time sowing dates and target control measures it is crucial that accurate estimates of when migratory adult CSFB will arrive at the crop can be made. A Bayesian hierarchical model was fitted to data from 19 sites containing adult CSFB traps over a period of three years to characterise the relationship between the day of year, temperature, rainfall, wind speed and solar radiation on beetle counts and to understand their relative importance. Day of the year was identified as the main driver of migration and temperature was the predominant environmental driver of CSFB migration. A hot day (based on the range of observed temperatures over the trapping window) resulted in approximately 300% of the expected CSFB migration relative to an average day during peak migration. The second most important environmental driver of migration was wind speed, but this resulted in a relatively negligible increase of approximately 15% from an average day to a still day. These findings suggest that efforts to predict timing of adult CSFB migration should focus on understanding how the phenology of CSFB and temperature interact to drive the timing of migration.