Arnica tincture is a herbal medicinal preparation with anti-inflammatory activity which is used traditionally for the topical treatment of blunt injuries as well as rheumatic muscle and joint complaints. Its main bioactive constituents are sesquiterpene lactones (STLs) of the helenalin and 11α,13-dihydrohelenalin types. Besides the mentioned activity, the tincture and its isolated STLs have antileishmanial activity. In a recent in vivo study, a treatment with Arnica tincture cured cutaneous Leishmaniasis (CL) in a golden hamster model. CL is a neglected tropical disease affecting more than two million people every year, for which new treatments are urgently needed. In order to use Arnica tincture on open CL lesions of human patients, it is important to know how the constituents are metabolized. Therefore, in vitro metabolism experiments with liver microsomes of different species (rat, pig and human) were performed with the Arnica STLs helenalin acetate and 11α,13-dihydrohelenalin acetate. Phase I and phase II metabolism experiments were performed, as well as a combination of both. Glutathione conjugation plays a major role in the metabolism of these STLs, as could be expected based on previous reports on their reactivity. Besides glutathione conjugates, several other metabolites were formed, e.g., water conjugates and hydroxides. Our results show for the first time a detailed picture of the metabolism of Arnica STLs. The fast and extensive formation of glutathione conjugates makes it unlikely that low absorbed levels of these compounds, as expected after dermal absorption from Arnica tincture, could be of toxicological concern.
Citrinin (CIT) is a nephrotoxic mycotoxin commonly found in a broad range of foods, including cereals, spices, nuts, or Monascus fermentation products. Analyses have shown that CIT is present in processed foods in significantly lower concentrations than in unprocessed materials. Modified forms of CIT arising during food processing may provide an explanation for the discrepancy. This study deals with the thermal stability of CIT and the formation of reaction products of CIT with carbohydrates, followed by toxicological evaluations using cell culture models. HPLC-HRMS degradation curves of CIT heated in different matrix model systems were recorded, and the formation of decarboxycitrinin (DCIT), the main degradation product, was quantified. Additionally, chemical structures of reaction products of CIT with carbohydrates were tentatively identified using MS/MS spectra and stable isotope labelling. Subsequently, the degradation of CIT during biscuit baking was studied, and carbohydrate-bound forms of CIT were detected after enzymatic starch digestion. The formation of DCIT could explain the majority of CIT degradation, but, depending on the process, covalent binding to carbohydrates can also be highly relevant. Cytotoxicity of DCIT in IHKE-cells was found to be lower compared to CIT, while the toxicity as well as the intestinal metabolism of carbohydrate-bound CIT was not evaluated.
Abstract Mycotoxins are secondary fungal metabolites which exhibit toxic effects in low concentrations. Several mycotoxins are described as carcinogenic or immunosuppressive, but their underlying modes of action especially on molecular level have not yet been entirely elucidated. Metabolic profiling as part of the omics methods is a powerful tool to study the toxicity and the mode of action of xenobiotics. The use of hydrophilic interaction chromatography in combination with targeted mass spectrometric detection enables the selective and sensitive analysis of more than 100 polar and ionic metabolites and allows the evaluation of metabolic alterations caused by xenobiotics such as mycotoxins. For metabolic profiling, the hepato-cellular carcinoma cell line HepG2 was treated with sub-cytotoxic concentrations of 20 mycotoxins. Moniliformin and citrinin significantly affected target elements of the citric acid cycle, but also influenced glycolytic pathways and energy metabolism. Penitrem A, zearalenone, and T2 toxin mainly interfered with the urea cycle and the amino acid homeostasis. The formation of reactive oxygen species seemed to be influenced by T2 toxin and gliotoxin. Glycolysis was altered by ochratoxin A and DNA synthesis was affected by several mycotoxins. The observed effects were not limited to these metabolic reactions as the metabolic pathways are closely interrelated. In general, metabolic profiling proved to be a highly sensitive tool for hazard identification in comparison to single-target cytotoxicity assays as metabolic alterations were already observed at sub-toxic concentrations. Metabolic profiling could therefore be a powerful tool for the overall evaluation of the toxic properties of xenobiotics.
Hordenine, a bioactive food compound, has several pharmacological properties and has recently been identified as a dopamine D2 receptor (D2R) agonist. Since the pharmacokinetic profile of hordenine has been described to a limited extent, the present study focused on the transfer and transport of hordenine across the intestinal epithelium and the blood-brain barrier (BBB) in vitro. Hordenine was quickly transferred through the Caco-2 monolayer in only a few hours, indicating a rapid oral uptake. However, the high bioavailability may be reduced by the observed efflux transport of hordenine from the bloodstream back into the intestinal lumen and by first pass metabolism in intestinal epithelial cells. To determine the biotransformation rate of hordenine, the metabolite hordenine sulfate was synthesized as reference standard for analytical purposes. In addition, transfer studies using primary porcine brain capillary endothelial cells (PBCEC) showed that hordenine is able to rapidly penetrate the BBB and potentially accumulate in the brain. Thus, a D2R interaction of hordenine and activation of dopaminergic signaling is conceivable, assuming that the intestinal barrier can be circumvented by a route of administration alternative to oral uptake.
Although many beneficial health effects are attributed to polyphenols their influence on the human metabolome has not been elucidated yet. The ubiquitous occurrence of polyphenols in the human diet demands comprehensive knowledge about physiological and toxicological effects of these compounds on human cells.The human hepatocarcinogenic cell line HepG2 is used to elucidate the effects of 13 polyphenols and three respective phenolic degradation products on the human metabolome using HPLC-MS/MS. To investigate structure-activity-relationships, structurally related examples of polyphenols from different compound classes are selected. The analysis of catechins points toward a relation between the degree of hydroxylation and the extent of metabolic effects particularly on the urea cycle and the pentose phosphate pathway (PPP). A correlation between the modulation of the PPP and the stability of the compounds is demonstrated, which may be caused by reactive oxygen species (ROS). The incubation of flavones and alkenylbenzenes demonstrates reduced activity of methoxylated compounds and no impact of the B-ring position.In general, polyphenols induce a multitude of metabolic effects, for example, on energy metabolism, PPP, and urea cycle. These metabolic alterations may be related to the widely reported bioactivity of these compounds such as the anticarcinogenic effects.
Fungi belonging to the genus Stachybotrys are frequently detected in water-damaged indoor environments, and a potential correlation between emerging health problems of inhabitants of affected housing and the fungi is controversially discussed. Secondary metabolites (i.e., mycotoxins) produced by Stachybotrys, such as the highly toxic macrocyclic trichothecenes (MCTs), are of potential concern to human health. The present study, however, focused on the potential effects of the more broadly and abundantly formed group of phenylspirodrimanes (PSDs). The phase I and II metabolism of four structurally different PSDs were investigated in vitro using hepatic models in combination with high-performance liquid chromatography high-resolution mass spectrometry (HPLC-HRMS) analysis. In addition to metabolite detection by HRMS, isolation and structure elucidation by nuclear magnetic resonance spectroscopy (NMR) was part of the conducted study as well.
Biologics that target pathogenic antibodies (Abs) and their effector functions such as the complement inhibitor ravulizumab and the neonatal Fc receptor agonist efgartigimod have recently been approved for the treatment of acetylcholine receptor (AChR)-Ab-positive myasthenia gravis (MG), but comparative studies are lacking.
The filamentous fungus Stachybotrys chartarum is rich in meroterpenoid secondary metabolites, some of which carry o -dialdehyde moieties, which are readily derivatized to isoindolinones by addition of primary amines. The structural diversity of phenylspirodrimanes, in particular, is linked to a wide range of biological activities, making them ideal candidates for semi-synthetic modification. In this study, acetoxystachybotrydial acetate was reacted with l -tryptophan and tryptamine, resulting in the detection of both regiospecific isomeric structures - a rare and significant finding that enabled the examination of four novel reaction products. Besides their successful purification, a detailed report on their isomer-specific behavior with regard to chromatographic retention, UV-spectral specificities, nuclear magnetic resonances, and mass spectrometric fragmentation is given. Furthermore, a comprehensive insight into each compounds’ unique effect within the tested biological assays is provided, which include cytotoxicity, genotoxicity, their biological activity against serine proteases of the blood coagulation cascade, and in vitro hepatic metabolism, always in comparison to the non-derivatized substance. Ultimately, each isomer can be distinguished already during the purification process, which extends to the biological assays where we present one less cytotoxic, faster metabolized, and more active regio-isomeric phenylspirodrimane-derivative.