ABSTRACT Mutation of the SCARECROW (SCR) gene results in a radial pattern defect, loss of a ground tissue layer, in the root. Analysis of the shoot phenotype of scr mutants revealed that both hypocotyl and shoot inflorescence also have a radial pattern defect, loss of a normal starch sheath layer, and consequently are unable to sense gravity in the shoot. Analogous to its expression in the endodermis of the root, SCR is expressed in the starch sheath of the hypocotyl and inflorescence stem. The SCR expression pattern in leaf bundle sheath cells and root quiescent center cells led to the identification of additional phenotypic defects in these tissues. SCR expression in a pin-formed mutant background suggested the possible origins of the starch sheath in the shoot inflorescence. Analysis of SCR expression and the mutant phenotype from the earliest stages of embryogenesis revealed a tight correlation between defective cell divisions and SCR expression in cells that contribute to ground tissue radial patterning in both embryonic root and shoot. Our data provides evidence that the same molecular mechanism regulates the radial patterning of ground tissue in both root and shoot during embryogenesis as well as postembryonically.
In the Arabidopsis root meristem, initial cells undergo asymmetric divisions to generate the cell lineages of the root. The scarecrow mutation results in roots that are missing one cell layer owing to the disruption of an asymmetric division that normally generates cortex and endodermis. Tissue-specific markers indicate that a heterogeneous cell type is formed in the mutant. The deduced amino acid sequence of SCARECROW (SCR) suggests that it is a member of a novel family of putative transcription factors. SCR is expressed in the cortex/endodermal initial cells and in the endodermal cell lineage. Tissue-specific expression is regulated at the transcriptional level. These results indicate a key role for SCR in regulating the radial organization of the root.
Summary Mutations at the SCARECROW (SCR) locus in Arabidopsis thaliana result in defective radial patterning in the root and shoot. The SCR gene product contains sequences which suggest that it is a transcription factor. A number of Arabidopsis Expressed Sequence Tags (ESTs) have been identified that encode gene products bearing remarkable similarity to SCR throughout their carboxyl‐termini, indicating that SCR is the prototype of a novel gene family. These ESTs have been designated SCARECROW‐LIKE (SCL). The gene products of the GIBBERELLIN‐INSENSITIVE (GAI) and the REPRESSOR of ga1–3 (RGA) loci show high structural and sequence similarity to SCR and the SCLs. Sequence analysis of the products of the GRAS (GAI, RGA, SCR) gene family indicates that they share a variable amino‐terminus and a highly conserved carboxyl‐terminus that contains five recognizable motifs. The SCLs have distinct patterns of expression, but all of those analyzed show expression in the root. One of them, SCL3, has a tissue‐specific pattern of expression in the root similar to SCR. The importance of the GRAS gene family in plant biology has been established by the functional analyses of SCR, GAI and RGA.