The interaction mechanism between transverse domain walls (TDWs) in Permalloy nanowires and artificially patterned traps is studied using high-sensitivity spatially resolved magneto-optical Kerr effect measurements and numerical simulations. T-shaped trap geometries are considered, where a DW traveling in the horizontal arm is pinned by the vertical arm. Pinning strengths as well as potential energy modifications created by the traps are measured, and the roles of the different DW characteristic parameters, such as the DW core orientation and the magnetic charge distribution within the DW, are presented. It is found that whether or not the core of the DW is aligned with the transverse arm of the T structure affects the shape of the main potential experienced by the DW, whereas the pinning strength strongly depends on which side of the V-shaped TDW interacts with the trap. The role of the magnetostatic interaction between the charge of the DW and the charge present at the junction is discussed.
Six-fold configurational anisotropy was studied in Permalloy triangles, in which the shape symmetry order yields two energetically non-degenerate micromagnetic configurations of the spins, the so-called Y and “buckle” states. A 12-pointed switching astroid was measured using magneto-optical experiments and well reproduced numerically. Switching fields in different polar sectors were shown to reflect the different possible energy paths dictated by the configurational anisotropy during a 180° reversal of the magnetization, thereby giving a comprehensive view of the switching mechanism in these structures. A detailed analysis moreover highlighted the necessity to include the physical rounding of the structures in the simulations to account for the instability of the Y state.
Abstract Injecting low salinity water into a petroleum reservoir to improve oil recovery has been studied extensively over recent years as a low cost enhanced oil recovery (EOR) process. Extensive chemical analyses have been performed on the effluent water from low salinity waterflood experiments which reveal the extent of interaction between the injected brine, the oil and the rock matrix. However, there has been little work reported on the impact of the injected fluid composition on the nature and composition of the oil recovered. This paper details an investigation on how the waterflood medium affects the chemistry of the produced oil, which is important for understanding the mechanism by which the additional oil is released. Produced oil samples were analyzed using High Resolution Mass Spectrometry (HRMS) which essentially measures the mass of individual molecular species very precisely, which makes it possible to assign a unique elemental composition (e.g. carbon, hydrogen, oxygen, nitrogen and sulfur content) to each mass. Additionally, by careful control of the ionization procedure, it was possible to identify acidic and basic polar species, as well as neutral aromatic hydrocarbons. The data indicates that the composition of the produced oil changes during the reduced salinity waterflood, with an increase in the CxHyO2 species occurring. These molecular species, compared to the secondary high salinity flood, are released as the tertiary low salinity injection water passes through the core; they then decline towards the end of the waterflood. In contrast, there appears to be little change in aromaticity, sulfur and nitrogen containing species during the flood. The fact that the produced oil is enriched predominantly with CxHyO2 species is consistent with the multiple ion exchange and local pH rise mechanisms proposed previously.
We experimentally demonstrate a shift register based on an open-ended chain of ferromagnetic NOT gates which can support bidirectional data flow. Up to eight data bits are electrically input to the device, stored for extended periods without power, and then output either in a first in first out or last in first out scheme. Comparing to traditional transistor-based logic, this bidirectionality offers a range of devices that are reversible and not limited to only one mode of operation.
Abstract The production of gaseous sulfur-containing species during the steam-assisted recovery of heavy oil and bitumen have important consequences for both economics and safety. Factors such as the effects of mineral matrices require laboratory data to produce accurate models. To study mineral effects on gas production we studied a well-characterized oil-containing core and the isolated crude oil from that core. The samples were run at 250–300°C in the continued presence of liquid water for 24 hours. The reaction products of all experiments include gases, oil flotate, oil sinkate, water-soluble products, and water-insoluble residues. All reaction products were studied with a variety of analytical techniques, including FTIR spectroscopy, chromatographic fractionation (SARA analysis), GC-MS, pyrolysis GCMS and GC-FPD/TCD. These techniques were applied to whole oil, maltenes and asphaltene fractions. Physical properties including viscosity and density were also measured. Our data provide insights into the physical and chemical consequences of steam assisted recovery of heavy oils and bituments from sedimentary rock reservoirs and reveal that geological and geochemical context is an essential consideration.
Abstract The production of gaseous sulfur-containing species during the steam-assisted recovery of heavy oil and bitumen presents problems owing to their toxicity, corrosion properties and odor. In order to quantitatively study aquathermolysis sulfur chemistry during the thermal (steam-assisted) recovery of heavy oils we have subjected a well-characterized and sulfur-rich bitumen core sample to 150 - 325°C and 70 - 1740 psia (0.48 - 12 MPa) conditions in the continued presence of liquid water for 24 hours. The reaction products include gases, oil flotate, oil sinkate, water-soluble products, and water- insoluble residues. All have been studied with a variety of analytical techniques, including FTIR spectroscopy, chromatographic fractionation (SARA analysis), GC-FPD and GC-MS. Moreover, these techniques have been extended to analysis of the asphaltene fractions. Results suggest that some in-situ upgrading of the oil occurs under these conditions; additionally, gaseous hydrogen sulfide is released at temperatures at and above 250 °C. Variations in the relative abundances of solubility classes and chemical fractions imply that the source of sulfur is via the thermal degradation of resins and/or asphaltenes. The experimental methods, results and quantification approach discussed herein will be useful to support the development of models for engineering design of facilities for the steam-assisted recovery of heavy oils and bitumen.
The effect of Type I fish antifreeze protein (AFP) from the winter flounder, Pleuronectes americanus (Walbaum), (WfAFP) on the formation of tetrahydrofuran (THF) clathrate hydrate was studied by observing changes in THF crystal morphology and determining the induction time for nucleation. AFP retarded THF clathrate-hydrate growth at the tested temperatures and modified the THF clathrate-hydrate crystal morphology from octahedral to plate-like. AFP appears to be even more effective than the kinetic inhibitor, polyvinylpyrrolidone (PVP). Recombinant AFP from an insect, a spruce budworm, Choristoneura fumiferana (Clem.), moth, (Cf) was also tested for inhibition activity by observation of the THF-hydrate-crystal-growth habit. Like WfAFP, CfAFP appeared to show adsorption on multiple THF-hydrate-crystal faces. A protein with no antifreeze activity, cytochrome C, was used as a control and it neither changed the morphology of the THF clathrate-hydrate crystals, nor retarded the formation of the hydrate. Preliminary experiments on the inhibition activity of WfAFP on a natural gas hydrate assessed induction time and the amount of propane gas consumed. Similar to the observations for THF, the data indicated that WfAFP inhibited propane-hydrate growth. Taken together, these results support our hypothesis that AFPs can inhibit clathrate-hydrate growth and as well, offer promise for the understanding of the inhibition mechanism. PACS No.: 87.90ty
In the petroleum hydrocarbon fluids, the most commonly found molecules are alkanes (linear or branched paraffins), cycloalkanes (naphthenes), aromatic hydrocarbons, or more complicated compounds like asphaltenes. Under surface pressure and temperature conditions, lighter hydrocarbons such as CH4, C2H6, and inorganic compounds such as N2, CO2, and H2S occur as gases, while pentane and heavier ones are in the form of liquids or solids. However, in petroleum reservoir the proportions of gas, liquid, and solid depend on subsurface conditions and on the phase diagram (envelop) of the petroleum mixture. To obtain compositions of a reservoir fluid, a reservoir sample is flashed into gas and liquid phases at ambient conditions. The volume of the flashed gas, and the mass, molar mass and density of the flashed liquid are measured. Then a gas chromatograph is used to analyze compositions of the gas and liquid phases as described briefly below. The recombined compositions based on the gas and liquid according to the measured gas/oil ratio are those of the reservoir fluid.