Abstract Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death, with a 5-year overall survival rate <7%. Several active systemic therapies are now available for PDAC. Personalizing therapy may be improved with the development of realistic tumor models from a patient's explanted tumoral tissue. Human pancreatic tumor patient-derived xenografts (PDX) implanted into immunodeficient mice and tumor organoids grown in vitro 3D culture are two promising models. However, it is uncertain if these models are histopathologically and genetically similar to the primary PDAC. Histopathological comparison of sections from PDX tumor, organoids, and primary PDAC from a 63-year-old female patient were performed on paraffin embedded tissue. H&E and immunohistochemical staining for cytokeratins (CK7, CK20), p53, Claudin-4, and CEA were performed. DNA and mRNA sequencing was performed. Both PDX and organoids exhibited histopathological features remarkably consistent with the original patient tumor including the histologic grade (moderately differentiated), cytological appearance (irregular nuclear membranes, open chromatin and prominent nucleoli), mitotic activity (5 -7/10 HPF), and immunohistochemical profile. The PDX and organoids demonstrated diffuse moderate-to-strong positivity for CK7, CEA, p53, and Claudin-4 and focal weak positivity for CK20 - all similar to the primary tumor. The immunohistochemical staining pattern was consistent with mRNA sequencing of the primary tumor which showed that CEA, Claudin-4 and p53 expression were ∼960-fold, ∼27-fold and ∼3 fold higher respectively (vs. benign pancreatic tissue). DNA sequencing revealed somatic mutations in KRAS and TP53 genes seen in >90% and ∼70% of PDACs respectively, and a few rare somatic mutations, such as a sodium leak channel (NALCN) mutation, seen in ∼3% of PDAC. Both PDX and organoid models of PDAC maintain key histological features, immunohistochemical profile and basic gene expression pattern akin to the primary tumor. These findings suggest that PDXs and organoids have the potential to serve as reliable pathophysiological models for optimizing individual therapy for patients with PDAC. Citation Format: Isabel Romero Calvo, Ashwin Akki, Andrey Ugolkov, Mary M. Buschmann, Samantha M. Sparrow, Teresa Barry, Margaret Eber, Tongjun Gu, Shuang Qin Zhang, Hedy Kindler, William Dale, Kevin Roggin, Andrew P. Mazar, Kevin P. White, Christopher R. Weber. Organoids and patient-derived tumor xenograft of pancreatic adenocarcinoma share morphological and genetic features with the primary tumor. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4272.
Purpose of review Cancer cachexia remains understudied and there are no standard treatments available despite the publication of an international consensus definition and the completion of several large phase III intervention trials in the past 6 years. In September 2015, The University of Rochester Cancer Center NCORP Research Base led a Symposium on Cancer Cachexia and Sarcopenia with goals of reviewing the state of the science, identifying knowledge gaps, and formulating research priorities in cancer cachexia through active discussion and consensus. Recent findings Research priorities that emerged from the discussion included the implementation of morphometrics into clinical decision making, establishing specific diagnostic criteria for the stages of cachexia, expanding patient selection in intervention trials, identifying clinically meaningful trial endpoints, and the investigation of exercise as an intervention for cancer cachexia. Summary Standardizing how we define and measure cancer cachexia, targeting its complex biologic mechanisms, enrolling patients early in their disease course, and evaluating exercise, either alone or in combination, were proposed as initiatives that may ultimately result in the improved design of cancer cachexia therapeutic trials.
Sustained directional migration of epithelial cells is essential for regeneration of injured epithelia. Front–rear polarity of migrating cells is determined by local activation of a signaling network involving Cdc42 and other factors in response to spatial cues from the environment, the nature of which are obscure. We examined the roles of laminin (LM)-511 and LM-332, two structurally different laminin isoforms, in the migration of Madin–Darby canine kidney cells by suppressing expression of their α subunits using RNA interference. We determined that knockdown of LM-511 inhibits directional migration and destabilizes cell–cell contacts, in part by disturbing the localization and activity of the polarization machinery. Suppression of integrin α3, a laminin receptor subunit, in cells synthesizing normal amounts of both laminins has a similar effect as knockdown of LM-511. Surprisingly, simultaneous suppression of both laminin α5 and laminin α3 restores directional migration and cell–cell contact stability, suggesting that cells recognize a haptotactic gradient formed by a combination of laminins.
Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2–Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury.
The human body, with 3.0 × 10 13 cells and more than 3.8 × 10 13 microorganisms, has nearly a one‐to‐one ratio of resident microbes to human cells. Initiatives like the Human Microbiome Project, American Gut, and Flemish Gut have identified associations between microbial taxa and human health. The study of interactions between microbiome and pharmaceutical agents, i.e., pharmacomicrobiomics, has revealed an instrumental role of the microbiome in modulating drug response that alters the therapeutic outcomes. In this review, we present our current comprehension of the relationship of the microbiome, host biology, and pharmaceutical agents such as cardiovascular drugs, analgesics, and chemotherapeutic agents to human disease and treatment outcomes. We also discuss the significance of studying diet–gene–drug interactions and further address the key challenges associated with pharmacomicrobiomics. Finally, we examine proposed models employing systems biology for the application of pharmacomicrobiomics and other ‐omics data, and provide approaches to elucidate microbiome–drug interactions to improve future translation to personalized medicine.
The microbiome, a collection of microorganisms, their genomes, and the surrounding environmental conditions, is akin to a human organ, and knowledge is emerging on its role in human health and diseases. The influence of the microbiome in drug response has only been investigated in detail for the last 10 years. The human microbiome is a complex and highly dynamic system, which varies dramatically between individuals, yet there exists a common core microbiome that is heritable and can be transmitted to progeny. Here, we review the role of the human microbiome, which is now widely accepted as a major factor that drives the interpersonal variation in therapeutic response. We describe examples in which the microbiome modifies drug action. Despite its complexity, the microbiome can be readily altered, with the potential to increase the benefits and reduce the toxicity and side effects associated with pharmaceutical drugs. The potential of new microbiome-based strategies, such as fecal microbiota transplant, probiotics, and phage therapy, as promising medical therapeutics are outlined. We also suggest a combination reductionist and system-level approaches that could be applied to further investigate the role of microbiota in drug metabolism modulation of drug response. Finally, we emphasize the importance of combining microbiome and pharmacology studies as a novel means to treat disease and reduce side effects.
Renal tubular epithelial cells synthesize laminin (LN)5 during regeneration of the epithelium after ischemic injury. LN5 is a truncated laminin isoform of particular importance in the epidermis, but it is also constitutively expressed in a number of other epithelia. To investigate the role of LN5 in morphogenesis of a simple renal epithelium, we examined the synthesis and function of LN5 in the spreading, proliferation, wound-edge migration, and apical-basal polarization of Madin-Darby canine kidney (MDCK) cells. MDCK cells synthesize LN5 only when subconfluent, and they degrade the existing LN5 matrix when confluent. Through the use of small-interfering RNA to knockdown the LN5 alpha3 subunit, we were able to demonstrate that LN5 is necessary for cell proliferation and efficient wound-edge migration, but not apical-basal polarization. Surprisingly, suppression of LN5 production caused cells to spread much more extensively than normal on uncoated surfaces, and exogenous keratinocyte LN5 was unable to rescue this phenotype. MDCK cells also synthesized laminin alpha5, a component of LN10, that independent studies suggest may form an assembled basal lamina important for polarization. Overall, our findings indicate that LN5 is likely to play an important role in regulating cell spreading, migration, and proliferation during reconstitution of a continuous epithelium.