Abstract. Glaciers in the inner tropics are rapidly retreating due to atmospheric warming. In Colombia, this retreat is accelerated by volcanic activity, and most glaciers are in their last stages of existence. There is general concern about the hydrological implications of receding glaciers, as they constitute important freshwater reservoirs and, after an initial increase in melting flows due to glacier retreat, a decrease in water resources is expected in the long term as glaciers become smaller. In this paper, we perform a comprehensive study of the evolution of a small Colombian glacier, Conejeras (Parque Nacional Natural de los Nevados) that has been monitored since 2006, with a special focus on the hydrological response of the glacierized catchment. The glacier shows great sensitivity to changes in temperature and especially to the evolution of the El Niño–Southern Oscillation (ENSO) phenomenon, with great loss of mass and area during El Niño warm events. Since 2006, it has suffered a 37 % reduction, from 22.45 ha in 2006 to 12 ha in 2017, with an especially abrupt reduction since 2014. During the period of hydrological monitoring (June 2013 to December 2017), streamflow at the outlet of the catchment experienced a noticeable cycle of increasing flows up to mid-2016 and decreasing flows afterwards. The same cycle was observed for other hydrological indicators, including the slope of the rising flow limb and the monthly variability of flows. We observed an evident change in the daily hydrograph, from a predominance of days with a purely melt-driven hydrograph up to mid-2016, to an increase in the frequency of days with flows less influenced by melt after 2016. Such a hydrological cycle is not directly related to fluctuations of temperature or precipitation; therefore, it is reasonable to consider that it is the response of the glacierized catchment to retreat of the glacier. Results confirm the necessity for small-scale studies at a high temporal resolution, in order to understand the hydrological response of glacier-covered catchments to glacier retreat and imminent glacier extinction.
espanolEn este estudio se lleva cabo una evaluacion global de diferentes indices de sequia para la cuantificacion de los impactos en caudales, humedad del suelo, crecimiento de los bosques y rendimiento de los cultivos. Para ello, se compara el Indice de Precipitacion Estandarizada (SPI), cuatro versiones del Indice de Severidad de Sequia de Palmer (PDSI) y el Indice de Precipitacion Evapotranspiracion Estandarizada (SPEI). Se ha comprobado que el SPEI y el SPI, que permiten calcularse a diferentes escalas temporales, aportan mejores resultados que los diferentes indices de Palmer para explicar los impactos de la sequia. Existen pequenas diferencias entre el SPI y el SPEI, pero el SPEI muestra, en general, mejores correlaciones con las diferentes variables durante el periodo estival, momento en el que se registran los principales impactos de las sequias y cuando el seguimiento de las mismas resulta critico. EnglishIn this study we provide a global assessment of the performance of different drought indices for monitoring drought impacts to streamflows, soil moisture, forest growth and crop yields. For this purpose, we compare the Standardized Precipitation Index (SPI), four versions of the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). We have found a higher capability of the SPEI and the SPI drought indices, which are calculated on different time-scales, than the Palmer indices to explain the drought impacts. We have found small differences in the performance of the SPI and the SPEI indices, but the SPEI has been the drought index that records the best correlations between drought and the response variables in summer, the season in which more drought-related impacts are recorded and in which drought monitoring is critical.
Spain, one of the most mountainous countries in Europe, suffers from frequent river flooding due to specific climatic and topographic features. Many headwaters of the largest rivers in Spain are located in mountainous areas of mid-to-high elevation. These include the Pyrenees, the Central System, and the Cantabrian mountains, that have a sustained snowpack during the winter months. Most previous research on flood generation in Spain has focused on intense rainfall events, and the role of snowmelt has been ignored or considered marginal. In this paper we present a regional-scale study to quantify the relative importance of rainfall versus snowmelt in the largest floods recorded in mountain rivers in Spain during the last decades (1980–2014). We further analyzed whether catchments characteristics and weather types may favor the occurrence of rainfall or snowmelt induced floods. Results show that in 53% of the 250 analyzed floods the contribution of rainfall was larger than 90%, and in the rest of events snowmelt contribution was larger than 10%. Floods where snowmelt was the main contributor represented only 5% of the total events. The average contribution of snowmelt represents 18% of total runoff in floods that were analyzed. The role of snowmelt in floods, rather than triggering the event, was usually amplifying the duration of the event, especially after the peak flow was reached. In general, the importance of snowmelt in floods is greater in catchments with characteristics that favor snow accumulation. However, this does not apply to floods where contribution of snowmelt was larger than 90%, which tend to occur at catchments at mid-elevations that accumulate unusual amounts of snow that melt rapidly. Floods were more frequent under both cyclonic and anticyclonic synoptic situations over the Iberian Peninsula, as well as under advection of western and eastern flows. Our results contribute to the ongoing improvement of knowledge about the role of snow in the hydrology of Spanish rivers and on the importance of mountain processes on the hydrology of downstream areas.
<p>The availability of high spatial resolution historical remote sensing products and advances in Structure from Motion (SfM), Multi-View Stereopsis (MVS) and LiDAR (Light Detection And Ranging) techniques offer a wide range of applications to understand landscape evolution and to monitor geomorphological changes. In this work, we apply an optimised SfM-MVS workflow based on minimising georeferencing error on black and white and colour historical photographs acquired in 1945 (American flight series A), 1979 (Spanish Interministerial Order), 1991 (Spanish Coastal Directorate General) and 2006 (PNOA flights) to generate 3D point clouds, Digital Elevation Models (DEM) and orthomosaics at 1 m resolution for the beach-dune system and coastal area of Es Trenc (southern Mallorca). In addition, we applied LiDAR techniques on the Airborne Laser Scanning (ALS) point clouds collected by the PNOA LiDAR flights in 2014 and 2019 to generate DEMs. The use of these products in multi-temporal analysis requires quality control of their spatial accuracy due to the diversity of sources and technologies used. The first quality control was based on evaluating the SfM sparse cloud optimisation process in the orthomosaic georeferencing step by calculating the RMSE between the Ground Validation Points (GVP) surveyed with Global Navigation Satellite System (GNSS) readings and the predicted height values at the closest point of each SfM sparse cloud. The second quality control was based on systematically assessing the vertical accuracy of the dense MVS and ALS clouds as a step prior to point interpolation to generate DEMs at 1 m resolution. The height errors of these clouds were estimated by calculating the RMSE between the Ground Test Points (GTP) read by GNSS on the ground and the predicted values at the respective nearest point for each of the MVS and ALS cloud series. Preliminary results show that the optimised SfM-MVS method applied on historical imagery can generate high-resolution orthomosaics and DEMs with acceptable accuracy: RMSE in <em>z</em> ranges from 0.2 to 10 m, with the lower accuracy obtained for the 1945 DEM, due to the lower resolution and coarse grain size (texture) of the photographs used. Overall, these products in combination with current LiDAR-derived DEMs have great potential for monitoring historical landscape evolution in coastal ecosystems.</p>
Abstract Trends in high and low flows are valuable indicators of hydrological change because they highlight changes in various parts of the frequency distribution of streamflow series. This enables improved assessment of water availability in regions with high seasonal and inter-annual variability. There has been a substantial reduction in water resources in the Duero basin (Iberian Peninsula, Spain) and other areas of the Mediterranean region during the last 50 years, and this is likely to continue because of climate change. In this study, we investigated the evolution and trends in high and low flows in the Spanish part of the Duero basin, and in equivalent or closely-related precipitation indices for the period 1961–2005. The results showed a general trend of decrease in the frequency and magnitude of high flows throughout most of the basin. Moreover, the number of days with low flows significantly increased over this period. No clear relationship was evident between the evolution of high/low flows and changes in the distribution frequencies of the precipitation series. In contrast to what was expected, the number of days with heavy precipitation and the mean annual precipitation did not show significant trends across the basin, and the number of days without rainfall decreased slightly. The divergence between precipitation and runoff evolution was more accentuated in spring and summer. In the absence of trends in precipitation, it is possible that reforestation processes in the region, and increasing temperatures in recent decades, could be related to the decreasing frequency of high flows and the increasing frequency of low flows. Editor Z.W. Kundzewicz; Associate editor S. Grimaldi Citation Morán-Tejeda, E., López-Moreno, J.I., Vicente-Serrano, S.M., Lorenzo-Lacruz, J. and Ceballos-Barbancho, A., 2012. The contrasted evolution of high and low flows and precipitation indices in the Duero basin (Spain). Hydrological Sciences Journal, 57 (4), 591–611.
Abstract. In this study the climatic and hydrological trends across 88 sub-basins of the Ebro River basin were analyzed for the period 1950–2006. A new database of climate information and river flows for the entire basin facilitated a spatially distributed assessment of climate-runoff relationships. It constitutes the first assessment of water yield evolution across the whole Ebro basin, a very representative example of large Mediterranean rivers. The results revealed a marked decrease in river discharges in most of the sub-basins. Moreover, a number of changes in the seasonality of the river regime was found, resulting from dam regulation and a decrease in snowpack in the headwaters. Significant and positive trends in temperature were observed across most of the basin, whereas most of the precipitation series showed negative coefficients, although the decrease in magnitude was low. The time evolution of the residuals from empirical models that relate climate and runoff in each sub-basin provided evidence that climate alone does not explain the observed decrease in river discharge. Thus, changes in water yield are associated with an increase in evapotranspiration rates in natural vegetation, growth of which has expanded as a consequence of land abandonment in areas where agricultural activities and livestock pressure have decreased. In the lowlands of the basin the decrease in water yield has been exacerbated by increased water consumption for domestic, industrial and agricultural uses. Climate projections for the end of the 21st century suggest a reduced capacity for runoff generation because of increasing temperature and less precipitation. Thus, the maintenance of water supply under conditions of increasing demand presents a challenging issue requiring appropriate coordination amongst politicians and managers.