Specific drug delivery to metastatic tumors remains a great challenge for antimetastasis therapy. We herein report a bioengineered macrophage-based delivery system (LD-MDS) that can be preferentially delivered to lung metastases and intelligently transformed into nanovesicles and secondary nanovesicles for antimetastasis therapy. LD-MDS was prepared by anchoring a legumain-specific propeptide of melittin (legM) and cytotoxic soravtansine (DM4) prodrug onto the membrane of living macrophages. LD-MDS is responsively activated by legumain protease and converted into DM4-loaded exosome-like nanovesicles (DENs), facilitating efficient internalization by metastatic 4T1 cancer cells and considerable cell death. Afterward, the damaged 4T1 cells can release secondary nanovesicles and free drug molecules to destroy neighboring cancer cells. In vivo, LD-MDS displays superior targeting efficiency for lung metastatic lesions with diameters less than 100 μm and remarkably inhibits lung metastasis. This study provides a new opportunity to explore endogenous macrophages as living drug delivery vehicles with controlled drug release to target metastatic lung tumors.
Cancer metastasis is the leading reason for the high mortality of breast cancer.Herein, we report on a pH-responsive host-guest nanosystem of succinobucol (PHN) with pH-stimuli controlled drug release behavior to improve the therapeutic efficacy on lung metastasis of breast cancer.PHN was composed of the host polymer of β-cyclodextrin linked with multiple arms of N,N-diisopropylethylenediamine (βCD-DPA), the guest polymer of adamantyl end-capped methoxy poly(ethylene glycol) (mPEG-Ad), and the active agent of succinobucol.PHN comprises nanometer-sized homogenous spherical particles, and exhibits specific and rapid drug release in response to the intracellular acidic pH-stimuli.Then, the anti-metastatic efficacy of PHN is measured in metastatic 4T1 breast cancer cells, which effectively confirms the superior inhibitory effects on cell migration and invasion activities, VCAM-1 expression and cell-cell binding of RAW 264.7 to 4T1 cells.Moreover, PHN can be specifically delivered to the sites of metastatic nodules in lungs, and result in an obviously improved therapeutic efficacy on lung metastasis of breast cancer.Thereby, the pH-responsive host-guest nanosystem can be a promising drug delivery platform for effective treatment of cancer metastasis.
Cancer metastasis leads to high mortality of breast cancer and is difficult to treat because of the poor delivery efficiency of drugs. Herein, we report the wrapping of a drug-carrying liposome with an isolated macrophage membrane to improve delivery to metastatic sites. The macrophage membrane decoration increased cellular uptake of the emtansine liposome in metastatic 4T1 breast cancer cells and had inhibitory effects on cell viability. In vivo, the macrophage membrane enabled the liposome to target metastatic cells and produced a notable inhibitory effect on lung metastasis of breast cancer. Our results provide a biomimetic strategy via the biological properties of macrophages to enhance the medical performance of a nanoparticle in vivo for treating cancer metastasis.
Abstract Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen‐loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen‐loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C‐C motif ligand 2 (CCL2), CCL3, and C‐X‐C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate‐derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.
Hypoxia is a serious impediment to current treatments of many malignant tumors. Catalase, an antioxidant enzyme, is capable of decomposing endogenous hydrogen peroxide (H2O2) into oxygen for tumor reoxygenation, but suffered from in vivo instability and limited delivery to deep interior hypoxic regions in tumor. Herein, a deep-penetrated nanocatalase-loading DiIC18 (5, DiD) and soravtansine (Cat@PDS) were provided by coating catalase nanoparticles with PEGylated phospholipids membrane, stimulating the structure and function of erythrocytes to relieve tumor hypoxia for enhanced chemo-photodynamic therapy. After intravenous administration, Cat@PDS preferentially accumulated at tumor sites, flexibly penetrated into the interior regions of tumor mass and remarkably relieved the hypoxic status in tumor. Notably, the Cat@PDS + laser treatment produced striking inhibition of tumor growth and resulted in a 97.2% suppression of lung metastasis. Thus, the phospholipids membrane-coated nanocatalase system represents an encouraging nanoplatform to relieve tumor hypoxia and synergize the chemo-photodynamic cancer therapy.
Small interfering RNAs (siRNAs) are promising therapeutic strategies, and five siRNA drugs have been approved by the Food and Drug Administration (FDA) and the European Commission (EC). This marks a significant milestone in the development of siRNA for clinical applications. The approved siRNA agents can effectively deliver siRNAs to the liver and treat liver-related diseases. Currently, researchers have developed diverse delivery platforms for transporting siRNAs to different tissues such as the brain, lung, muscle, and others, and a large number of siRNA drugs are undergoing clinical trials. Here, these delivery technologies and the latest advancements in clinical applications are summarized, and this Review provides a concise overview of the strategies employed for siRNA delivery to both hepatic and extrahepatic tissues.