Seal parapoxvirus (SPPV) infection has been reported among pinnipeds in aquaria in Japan; however, its seroprevalence is unknown. Therefore, an enzyme-linked immunosorbent assay (ELISA) was developed for serological diagnosis of SPPV infection.The gene encoding the major envelope protein of SPPV was cloned into the eukaryotic expression vector pAcGFP1-N1, which encodes the green fluorescence protein (GFP), thereby producing a fusion protein (Env-GFP). Parental and cloned vector DNA was independently transfected into cultured seal cells for the expression of GFP and Env-GFP. The wells of an ELISA plate were coated with either GFP- or Env-GFP-transfected cell lysates. The light absorbance of each serum sample was adjusted by subtracting the absorbance of GFP-coated wells from that of Env-GFP-coated wells. Sera from two spotted seals (Phoca largha), six beluga whales (Delphinapterus leucas), three Pacific white-sided dolphins (Lagenorhynchus obliquidens), and ten bottlenose dolphins (Tursiops truncatus) from an aquarium in Japan were examined using the ELISA.Positive reactions were not observed, except in one preserved sample collected ten years ago from a naturally SPPV-infected spotted seal.The established ELISA could be useful in screening marine mammal sera for anti-SPPV antibodies.
This study aimed to characterize the mRNA signature of milk small extracellular vesicles (sEVs) from BLV-infected cattle. A total of 23 mRNAs, which showed greater abundance in milk sEVs from BLV-infected cattle compared to those from BLV-uninfected (control) cattle, were identified through microarray analyses conducted in our previous study. To assess the significance of these differences in mRNA abundance, milk was collected from six control cattle and twenty-six cattle infected with BLV. The infected cattle were categorized into two distinct groups based on their proviral loads: a group of eight cattle with low proviral loads (LPVL), characterized by <10,000 copies per 105 white blood cells (WBC), and a group of eighteen cattle with high proviral loads (HPVL), marked by ≥10,000 copies per 105 WBC. The qPCR analysis quantified 7 out of 23 mRNAs, including BoLA, CALB1, IL33, ITGB2, MYOF, TGFBR1, and TMEM156, in the milk sEVs from control cattle, LPVL cattle, and HPVL cattle. Significantly, the average relative expression of CALB1 mRNA in milk sEVs was higher in LPVL cattle compared to HPVL cattle and control cattle (p < 0.05), while it was relatively lower in HPVL cattle compared to LPVL cattle and control cattle (p > 0.05). Likewise, the average relative expression of TMEM156 mRNA in milk sEVs was significantly higher in LPVL cattle compared to HPVL cattle (p < 0.05), and relatively lower in HPVL cattle compared to LPVL cattle and control cattle (p > 0.05). The results indicate distinct patterns of CALB1 and TMEM156 mRNA levels in milk sEVs, with higher levels observed in LPVL cattle and lower levels in HPVL cattle. The current study could provide essential information to comprehend the complexities during the progression of BLV infection and direct the exploration of mRNA biomarkers for monitoring the clinical stage of BLV infection.
Abstract Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non‐native state. The former ligands are termed “stabilizer chaperones” and the latter ones “destabilizer chaperones.” Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native‐ and non‐native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP + was absent, inhibitors such as isolithocholic acid stabilized the aldo–keto reductase AKR1A1 upon binding, which showed actually the three‐state folding, but destabilized AKR1B10. In contrast, in the presence of NADP + , they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔ G ) into its enthalpy (ΔΔ H ) and entropy (ΔΔ S ) components. Then we found that in a relatively unstable protein showing the three‐state folding, native conformation was stabilized by the negative ΔΔ H in association with the negative ΔΔ S , suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔ G was essentially determined by the delicate balance between ΔΔ H and ΔΔ S . The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations.
Abstract Streptomyces subtilisin inhibitor (SSI) is known to exist in at least two distinct denatured states, cold‐denatured (D') and heat‐denatured (D) under acidic conditions. In the present work, we investigated the manner how increasing urea concentration from 0 to 8 M changes the polypeptide chain conformation of SSI that exists initially in the D' and D states as well as in the native state (N), in terms of the secondary structure, the tertiary structure, and the chain form, based on the results of the experiments using circular dichroism (CD), small‐angle X‐ray scattering (SAXS) and 1 H‐NMR spectroscopy. Our results indicate that the urea‐induced conformational transitions of SSI under typical conditions of D' (pH 1.8, 3°C) occur at least in two steps. In the urea concentration range of 0‐2 M (step 1), a cooperative destruction of the tertiary structure occurs, resulting in a mildly denatured state (D U ), which may still contain a little amount of secondary structures. In the concentration range of 2‐4 M urea (step 2), the D U state gradually loses its residual secondary structure, and increases the radius of gyration nearly to a maximum value. At 4 M urea, the polypeptide chain is highly disordered with highly mobile side chains. Increasing the urea concentration up to 8 M probably results in the more highly denatured or alternatively the stiffer chain conformations. The conformational transition starting from the N state proceeds essentially the same way as in the above scheme in which D' is replaced with N. The conformational transition starting from the D state lacks step 1 because the D state contains no tertiary structures and is similar to the D U state. The fact that similar conformations are reached at urea concentrations above 2 M from different conformations of D', D, and N indicates that the effect of urea dominates in determining the polypeptide conformation of SSI in the denatured states rather than the pH and temperature.
Intermolecular interaction between hPrP and αS was investigated using high-speed atomic force microscopy, dynamic light scattering, and nuclear magnetic resonance. We found that hPrP spontaneously gathered and naturally formed oligomers. Upon addition of monomer αS with a disordered conformation, poly-dispersive property of hPrP was lost, and hetero-dimer formation started quite coherently, and further oligomerization was not observed. Solution structure of hPrP-αS dimer was firstly characterized using hetero-nuclear NMR spectroscopy. In this hetero-dimeric complex, C-terminal helical region of hPrP was in the molten-globule like state, while specific sites including hot spot and C-terminal region of αS selectively interacted with hPrP. Thus αS may suppress amyloidogenesis of hPrP by trapping the hPrP intermediate by the formation of a stable hetero-dimer with hPrP.Abbreviations: hPrP, human prion protein of amino acid residues of 23-231; PrPC, cellular form of prion protein; PrPSc, scrapie form of prion protein, HS-AFM; high speed atomic force microscopy; αS, α-synuclein; DLS, dynamic light scattering
Abstract Methanol‐induced conformational transitions of hen egg white lysozyme were investigated with a combined use of far and near‐UV CD and NMR spectroscopies, ANS binding and small‐angle X‐ray scattering. Addition of methanol induced no global change in the native conformation itself, but induced a transition from the native state to the denatured state which was highly cooperative, as shown by the coincidence of transition curves monitored by the far‐and near‐UV CD spectroscopy, by isodichroic points in the far‐ and near‐UV CD spectra and by the concomitant disappearance of individual 1 H NMR signals of the native state. The ANS binding experiments could detect no intermediate conformer similar to the molten globule state in the process of the methanol denaturation. However, at high concentration of methanol, e.g., 60% (v/v) methanol/water, a highly helical state (H) was realized. The H state had a helical content much higher than the native state, monitored by far‐UV CD spectroscopy, and had no specific tertiary structure, monitored both by near‐UV CD and NMR spectroscopy. The radius of gyration in the H state, 24.9 Å, was significantly larger than that in the native state (15.7 Å). The Kratky plot for the H state did not show a clear peak and was quite similar to that for the urea‐denatured state, indicating a complete lack of globularity. Thus we conclude that the H state has a considerably expanded, flexible broken rod‐like conformation which is clearly distinguishable from the “molten globule” state. The stability of both N and H states depends on p H and methanol concentration. Thus a phase diagram involving N and H was constructed.
Milk extracellular vesicles (EVs) form an excellent source of mRNAs, microRNAs (miRNAs), proteins, and lipids that represent the physiological and pathological status of the host. Recent studies have reported milk EVs as novel biomarkers for many infectious diseases in both humans and animals. For example, miRNAs in milk EVs from cattle were used for early detection of bacterial infection in the mammary gland. Based on these findings, we hypothesized that mRNAs in milk EVs are suitable for gaining a better understanding of the pathogenesis of bovine leukemia virus (BLV) infection and prognosis of the clinical stage in cattle. For that purpose, milk EVs were isolated from BLV-infected and uninfected cattle, and mRNAs were investigated using microarray analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed mainly focusing on the differentially expressed genes (DEGs) in milk EVs from BLV-infected cattle. GO and KEGG analyses suggested the DEGs in milk EVs from BLV-infected cattle had involved in diverse molecular functions, biological processes, and distinct disease-related pathways. The present study suggested that BLV infection causes profound effects on host cellular activity, changing the mRNA expression profile in milk EVs obtained from BLV-infected cattle. Overall, our results suggested that the mRNA profile in milk EVs to be a key factor for monitoring the clinical stage of BLV infection. This is the first report of mRNA profiling of milk EVs obtained from BLV-infected cattle.