In 2011 the Marshal Office of Małopolska Voivodeship decided to evaluate the vulnerability of soils to water erosion for the entire region. The quantitative and qualitative assessment of the erosion risk for the soils of the Małopolska region was done based on the USLE approach. The special work-flow of geoinformation technologies was used to fulfil this goal. A high-resolution soil map, together with rainfall data, a detailed digital elevation model and statistical information about areas sown with particular crops created the input information for erosion modelling in GIS environment. The satellite remote sensing technology and the object-based image analysis (OBIA) approach gave valuable support to this study. RapidEye satellite images were used to obtain the essential up-to-date data about land use and vegetation cover for the entire region (15,000 km2). The application of OBIA also led to defining the direction of field cultivation and the mapping of contour tillage areas. As a result, the spatially differentiated values of erosion control practice factor were used. Both, the potential and the actual soil erosion risk were assessed quantificatively and qualitatively. The results of the erosion assessment in the Małopolska Voivodeship reveal the fact that a majority of its agricultural lands is characterized by moderate or low erosion risk levels. However, high-resolution erosion risk maps show its substantial spatial diversity. According to our study, average or higher actual erosion intensity levels occur for 10.6 % of agricultural land, i.e. 3.6 % of the entire voivodeship area. In 20 % of the municipalities there is a very urgent demand for erosion control. In the next 23 % an urgent erosion control is needed. Our study showed that even a slight improvement of P-factor estimation may have an influence on modeling results. In our case, despite a marginal change of erosion assessment figures on a regional scale, the influence on the final prioritization of areas (municipalities) according to erosion control needs is visible. The study shows that, high-resolution satellite imagery and OBIA may be efficiently used for P-factor mapping and thus contribute to a refined soil erosion risk assessment.
Abstract Land Use and Land Cover (LULC) maps play an important role in an environmental modelling, and for many years efforts have been made to improve and streamline the expensive mapping process. The aim of the study was to create LULC maps of three selected water catchment areas in South Poland using a Geographic Object-Based Image Analysis (GEOBIA) in order to highlight the advantages of this innovative, semi-automatic method of image analysis. the classification workflow included: multi-stage and multi-scale analyses based on a data fusion approach. Input data consisted mainly of BlackBridge (RapidEye) high resolution satellite imagery, although for distinguishing particular LULC classes, additional satellite images (LANDSAT TM5) and GIS-vector data were used. Accuracy assessment of GEOBIA classification results varied from 0.83 to 0.87 (kappa), depending on the specific catchment area. The main recognized advantages of GEOBIA in the case study were: performing of multi-stage and multi-scale image classification using different features for specific LULC classes and the ability to using knowledge-based classification in conjunction with the data fusion approach in an efficient and reliable manner.
Abstract Reliable information concerning stand volume is fundamental to making strategic decisions in sustainable forest management. A variety of remotely sensed data and different inventory methods have been used for the estimation of forest biometric parameters. Particularly, airborne laser scanning (ALS) point clouds are widely used for the estimation of stand volume and forest biomass using an area-based approach (ABA) framework. This method relies on the reference measurements of field plots with the necessary prerequisite of a precise co-registration between ground reference plots and the corresponding ALS samples. In this research, the allometric area-based approach (AABA) is proposed in the context of stand volume estimation of Scots pine (Pinus sylvestris L.) stands. The proposed method does not require detailed information about the coordinates of the field plots. We applied Polish National Forest Inventory data from 9400 circular field plots (400 m2) to develop a plot level stand volume allometric model using two independent variables: top height (TH) and relative spacing index (RSI). The model was developed using the multiple linear regression method with a log–log transformation of variables. The hypothesis was that, the field measurements of TH and RSI could be replaced with corresponding ALS-derived metrics. It was assumed that TH could be represented by the maximum height of the ALS point cloud, while RSI can be calculated based on the number of tree crowns delineated within the ALS-derived canopy height model. Performance of the developed AABA model was compared with the semi-empirical ABASE (with two predictors: TH and RSI) and empirical ABAE (several point cloud metrics as predictors). The models were validated at the plot level using 315 forest management inventory plots (400 m2) and at the stand level using the complete field measurements from 42 Scots pine dominated forest stands in the Milicz forest district (Poland). The AABA model showed a comparable accuracy to the traditional ABA models with relatively high accuracy at the plot (relative root mean square error (RMSE) = 22.8 per cent; R2 = 0.63) and stand levels (RMSE = 17.8 per cent, R2 = 0.65). The proposed novel approach reduces time- and cost-consuming field work required for the classic ABA method, without a significant reduction in the accuracy of stand volume estimations. The AABA is potentially applicable in the context of forest management inventory without the necessity for field measurements at local scale. The transportability of the approach to other species and more complex stands needs to be explored in future studies.