Cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment with curative intent for peritoneal metastasis of colorectal cancer (CRC). Currently, there is no standardized HIPEC protocol: choice of drug, perfusate temperature, and duration of treatment vary per institute. We investigated the temperature-dependent effectiveness of drugs often used in HIPEC. Methods: The effect of temperature on drug uptake, DNA damage, apoptosis, cell cycle distribution, and cell growth were assessed using the temperature-dependent IC50 and Thermal Enhancement Ratio (TER) values of the chemotherapeutic drugs cisplatin, oxaliplatin, carboplatin, mitomycin-C (MMC), and 5-fluorouracil (5-FU) on 2D and 3D CRC cell cultures at clinically relevant hyperthermic conditions (38–43 °C/60 min). Results: Hyperthermia alone decreased cell viability and clonogenicity of all cell lines. Treatment with platinum-based drugs and MMC resulted in G2-arrest. Platinum-based drugs display a temperature-dependent synergy with heat, with increased drug uptake, DNA damage, and apoptosis at elevated temperatures. Apoptotic levels increased after treatment with MMC or 5-FU, without a synergy with heat. Conclusion: Our in vitro results demonstrate that a 60-min exposure of platinum-based drugs and MMC are effective in treating 2D and 3D CRC cell cultures, where platinum-based drugs require hyperthermia (>41 °C) to augment effectivity, suggesting that they are, in principle, suitable for HIPEC.
Background: Efficacy of current treatment options for cervical cancer require improvement. Previous in vitro studies have shown the enhancing effects of the addition of PARP1-inhibitors to chemoradiotherapy and thermoradiotherapy. The aim of our present study was to test efficacy of different combinations of treatment modalities radiotherapy, cisplatin, hyperthermia and PARP1-inhibitors using in vitro tumor models, ex vivo treated patient samples and in vivo tumor models.
DNA hypermethylation is common in colon cancer. Previously, we have shown that methylation of WNT target genes predicts poor prognosis in stage II colon cancer. The primary objective of this study was to assess whether pre-operative treatment with decitabine can decrease methylation and increase the expression of WNT target genes APCDD1, AXIN2 and DKK1 in colon cancer patients. A clinical study was conducted, investigating these potential effects of decitabine in colon cancer patients (DECO). Patients were treated two times with 25 mg/m2 decitabine before surgery. Methylation and expression of LINE1 and WNT target genes (primary outcome) and expression of endogenous retroviral genes (secondary outcome) were analysed in pre- and post-treatment tumour samples using pyrosequencing and rt-PCR. Ten patients were treated with decitabine and eighteen patients were used as controls. Decitabine treatment only marginally decreased LINE1 methylation. More importantly, no differences in methylation or expression of WNT target or endogenous retroviral genes were observed. Due to the lack of an effect on primary and secondary outcomes, the study was prematurely closed. In conclusion, pre-operative treatment with decitabine is safe, but with the current dosing, the primary objective, increased WNT target gene expression, cannot be achieved.
Introduction In patients with limited peritoneal metastasis (PM) originating from colorectal cancer, cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a potentially curative treatment option. This combined treatment modality using HIPEC with mitomycin C (MMC) for 90 minutes proved to be superior to systemic chemotherapy alone, but no benefit of adding HIPEC to CRS alone was shown using oxaliplatin-based HIPEC during 30 minutes. We investigated the impact of treatment temperature and duration as relevant HIPEC parameters for these two chemotherapeutic agents in representative preclinical models. The temperature- and duration- dependent efficacy for both oxaliplatin and MMC was evaluated in an in vitro setting and in a representative animal model. Methods In 130 WAG/Rij rats, PM were established through i.p. injections of rat CC-531 colon carcinoma cells with a signature similar to the dominant treatment-resistant CMS4 type human colorectal PM. Tumor growth was monitored twice per week using ultrasound, and HIPEC was applied when most tumors were 4-6 mm. A semi-open four-inflow HIPEC setup was used to circulate oxaliplatin or MMC through the peritoneum for 30, 60 or 90 minutes with inflow temperatures of 38°C or 42°C to achieve temperatures in the peritoneum of 37°C or 41°C. Tumors, healthy tissue and blood were collected directly or 48 hours after treatment to assess the platinum uptake, level of apoptosis and proliferation and to determine the healthy tissue toxicity. Results In vitro results show a temperature- and duration- dependent efficacy for both oxaliplatin and MMC in both CC-531 cells and organoids. Temperature distribution throughout the peritoneum of the rats was stable with normothermic and hyperthermic average temperatures in the peritoneum ranging from 36.95-37.63°C and 40.51-41.37°C, respectively. Treatments resulted in minimal body weight decrease (<10%) and only 7/130 rats did not reach the endpoint of 48 hours after treatment. Conclusions Both elevated temperatures and longer treatment duration resulted in a higher platinum uptake, significantly increased apoptosis and lower proliferation in PM tumor lesions, without enhanced normal tissue toxicity. Our results demonstrated that oxaliplatin- and MMC-based HIPEC procedures are both temperature- and duration-dependent in an in vivo tumor model.
The peritoneum is a common site for the formation of metastases originating from several gastrointestinal and gynecological malignancies. A representative preclinical model to thoroughly explore the pathophysiological mechanisms and to study new treatment strategies is important. A major challenge for such models is defining and quantifying the (total) tumor burden in the peritoneal cavity prior to treatment, since it is preferable to use non-invasive methods. We evaluated ultrasound as a simple and easy-to-handle imaging method for this purpose.Peritoneal metastases were established in six WAG/Rij rats through i.p. injections of the colon carcinoma cell line CC-531. Using ultrasound, the location, number and size of intraperitoneal tumor nodules were determined by two independent observers. Tumor outgrowth was followed using ultrasound until the peritoneal cancer index (PCI) was ≥8. Interobserver variability and ex vivo correlation were assessed.Visible peritoneal tumor nodules were formed in six WAG/Rij rats within 2-4 weeks after cell injection. In most animals, tumor nodules reached a size of 4-6 mm within 3-4 weeks, with total PCI scores ranging from 10-20. The predicted PCI scores using ultrasound ranged from 11-19 and from 8-18, for observer 1 and 2, respectively, which was quite similar to the ex vivo scores.Ultrasound is a reliable non-invasive method to detect intraperitoneal tumor nodules and quantify tumor outgrowth in a rat model.