The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in several cognitive and physiologic processes; its expression levels and patterns change in neurologic and psychiatric diseases, such as schizophrenia and Alzheimer’s disease, which makes it a relevant drug target. Development of selective radioligands is important for defining binding properties and occupancy of novel molecules targeting the receptor. We tested the in vitro binding properties of [125I]Iodo-ASEM [(3-(1,4-diazabycyclo[3.2.2]nonan-4-yl)-6-(125I-iododibenzo[b,d]thiopentene 5,5-dioxide)] in the mouse, rat and pig brain using autoradiography. The in vivo binding properties of [18F]ASEM were investigated using positron emission tomography (PET) in the pig brain. [125I]Iodo-ASEM showed specific and displaceable high affinity (~1 nM) binding in mouse, rat, and pig brain. Binding pattern overlapped with [125I]α-bungarotoxin, specific binding was absent in α7 nAChR gene-deficient mice and binding was blocked by a range of α7 nAChR orthosteric modulators in an affinity-dependent order in the pig brain. Interestingly, relative to the wild-type, binding in β2 nAChR gene-deficient mice was lower for [125I]Iodo-ASEM (58% ± 2.7%) than [125I]α-bungarotoxin (23% ± 0.2%), potentially indicating different binding properties to heteromeric α7β2 nAChR. [18F]ASEM PET in the pig showed high brain uptake and reversible tracer kinetics with a similar spatial distribution as previously reported for α7 nAChR. Blocking with SSR-180,711 resulted in a significant decrease in [18F]ASEM binding. Our findings indicate that [125I]Iodo-ASEM allows sensitive and selective imaging of α7 nAChR in vitro, with better signal-to-noise ratio than previous tracers. Preliminary data of [18F]ASEM in the pig brain demonstrated principal suitable kinetic properties for in vivo quantification of α7 nAChR, comparable to previously published data.
Abstract Background Inflammatory bowel disease (IBD) comprises a group of intestinal disorders, including ulcerative colitis and Crohn's disease. Intestinal fibrosis, as result of chronic inflammation, is a common complication in IBD. High treatment failure rates associated with existing interventions indicate a high unmet need for more effective drugs to improve the management and outcomes of IBD. Consequently, translational animal models of IBD demonstrating chronic, progressive colonic fibrosis are important tools in preclinical drug discovery for IBD. The aim of the present study was to characterize intestinal histopathology in a chronic DSS-induced mouse model of IBD. Methods Ten-weeks-old male C57BL/6JRj mice were randomized into study groups based on body weight and received 3 cycles of DSS (2.5 % w/v) in the drinking water (DSS-IBD) or normal water (CTRL). Terminal endpoints included colon morphometry and quantitative histological markers of inflammation and fibrosis assessed in proximal, middle and distal colonic segments. Using RNA sequencing, transcriptome signatures were profiled in the middle colon segment. Results Compared to healthy controls, the chronic DSS-IBD mouse model demonstrated hallmarks of IBD, including mild-to-moderate weight loss and colonic hypertrophy. Histopathological analysis indicated increased deposition of inflammatory (CD45 and CD11b), fibrogenesis (alpha-smooth muscle actin) and fibrosis markers (collagen 1a1, Picrosirius red) in the middle and distal colon. Severe fibrosis was observed throughout all layers of the middle colon. Histological findings were supported by significantly upregulated gene expression markers of inflammation and fibrosis. Conclusion The DSS-IBD mouse is a translational preclinical model suitable for testing novel drug therapies for IBD with intestinal fibrosis.
ABSTRACT Parkinson's disease (PD) is a basal ganglia movement disorder characterized by progressive degeneration of the nigrostriatal dopaminergic system. Immunohistochemical methods have been widely used for characterization of dopaminergic neuronal injury in animal models of PD, including the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. However, conventional immunohistochemical techniques applied to tissue sections have inherent limitations with respect to loss of 3D resolution, yielding insufficient information on the architecture of the dopaminergic system. To provide a more comprehensive and non-biased map of MPTP-induced changes in central dopaminergic pathways, we used iDISCO immunolabeling, light-sheet fluorescence microscopy (LSFM) and deep-learning computational methods for whole-brain three-dimensional visualization and automated quantitation of tyrosine hydroxylase (TH)-positive neurons in the adult mouse brain. Mice terminated 7 days after acute MPTP administration demonstrated widespread alterations in TH expression. Compared to vehicle controls, MPTP-dosed mice showed a significant loss of TH-positive neurons in the substantia nigra pars compacta and ventral tegmental area. Also, MPTP dosing reduced overall TH signal intensity in basal ganglia nuclei, i.e. the substantia nigra, caudate-putamen, globus pallidus and subthalamic nucleus. In contrast, increased TH signal intensity was predominantly observed in limbic regions, including several subdivisions of the amygdala and hypothalamus. In conclusion, mouse whole-brain 3D imaging is ideal for unbiased automated counting and densitometric analysis of TH-positive cells. The LSFM–deep learning pipeline tracked brain-wide changes in catecholaminergic pathways in the MPTP mouse model of PD, and may be applied for preclinical characterization of compounds targeting dopaminergic neurotransmission.
Background: Obesity, hyperglycemia and hypertension are critical risk factors for development of diabetic kidney disease (DKD). Emerging evidence suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular and renal outcomes in type 2 diabetes patients. Here, we characterized the effect of the long-acting GLP-1R agonist semaglutide alone and in combination with an ACE inhibitor (lisinopril) in a model of hypertension-accelerated, advanced DKD facilitated by adeno-associated virus-mediated renin overexpression (ReninAAV) in uninephrectomized (UNx) female diabetic db/db mice. Methods: Female db/db mice received a single intravenous injection of ReninAAV 1 week prior to UNx. Six weeks post-nephrectomy, db/db UNx-ReninAAV mice were administered (q.d.) vehicle, semaglutide (30 nmol/kg, s.c.) or semaglutide (30 nmol/kg, s.c.) + lisinopril (30 mg/kg, p.o.) for 11 weeks. Endpoints included blood pressure, plasma/urine biochemistry, kidney histopathology and RNA sequencing. Results: Vehicle-dosed db/db UNx-ReninAAV mice developed hallmarks of DKD characterized by severe albuminuria and advanced glomerulosclerosis. Semaglutide robustly reduced hyperglycemia, hypertension and albuminuria concurrent with notable improvements in glomerulosclerosis severity, podocyte filtration slit density, urine/renal kidney injury molecule-1 (KIM-1) levels and gene expression markers of inflammation and fibrogenesis in db/db UNx-ReninAAV mice. Co-administration of lisinopril further ameliorated hypertension and glomerulosclerosis. Conclusions: Semaglutide improves disease hallmarks in the db/db UNx-ReninAAV mouse model of advanced DKD. Further benefits on renal outcomes were obtained by adjunctive antihypertensive standard of care. Collectively, our study supports the development of semaglutide for management of DKD.
It is considered that activation of nicotinic alpha7 receptors (alpha7 nAChR) is useful for the treatment of cognitive disturbances in schizophrenia and Alzheimer's disease. Recently, selective alpha7 nAChR agonists have been discovered and are used to validate the alpha7 nAChR as a drug target for the treatment of cognitive disturbances in schizophrenia. One important feature shared by all known antipsychotics is their capacity to induce expression of the neuronal immediate-early gene c-fos in the limbic forebrain. Using two novel and selective alpha7 nAChR agonists, PNU-282987 and SSR180711, we investigated their ability to induce c-Fos expression in the limbic forebrain with particular emphasis on the same regions reported to be activated by antipsychotics. Both alpha7 nAChR agonists increased c-Fos dose-dependently in the prefrontal cortex and the shell of nucleus accumbens, while leaving the core of nucleus accumbens and the dorsolateral striatum unaffected. The accumbal and cortical effect of SSR180711 was blocked completely by pre-administration of the alpha7 nAChR antagonist methyllycaconitine. Also, SSR180711 displayed no c-Fos-inducing effect in alpha7 nAChR knock-out mice. In conclusion, these results show that selective pharmacologic stimulation of alpha7 nAChR function results in activation of forebrain regions similar to conventional antipsychotics.
Abstract Objective Marijuana and alcohol are most widely abused drugs among women of reproductive age. Neurocognitive deficits have been reported in children whose mothers used marijuana during pregnancy. Maternal consumption of ethanol is known to cause serious developmental deficits Methods Infant rats and mice received systemic injections of Δ 9 ‐tetrahydrocannabinol (THC; 1–10mg/kg) or the synthetic cannabinoid WIN 55,212‐2 (1–10mg/kg), alone or in combination with subtoxic and toxic ethanol doses, and apoptotic neurodegeneration was studied in the brains Results Acute administration of THC (1–10mg/kg), the principal psychoactive cannabinoid of marijuana, markedly enhanced proapoptotic properties of ethanol in the neonatal rat brain. THC did not induce neurodegeneration when administered alone. Neuronal degeneration became disseminated and severe when THC was combined with a mildly intoxicating ethanol dose (3gm/kg), with the effect of this drug combination resembling the massive apoptotic death observed when administering ethanol alone at much higher doses. The detrimental effect of THC was mimicked by the synthetic cannabinoid WIN 55,212‐2 (1–10mg/kg) and counteracted by the CB 1 receptor antagonist SR141716A (0.4mg/kg). THC enhanced the proapoptotic effect of the GABA A agonist phenobarbital and the N ‐methyl‐ D ‐aspartate receptor antagonist dizocilpine. Interestingly, infant CB 1 receptor knock‐out mice were less susceptible to the neurotoxic effect of ethanol. Furthermore, the CB 1 receptor antagonist SR141716A ameliorated neurotoxicity of ethanol Interpretation These observations indicate that CB 1 receptor activation modulates GABAergic and glutamatergic neurotransmission and primes the developing brain to suffer apoptotic neuronal death. Ann Neurol 2007
Adrenomedullin (ADM) is a vasoactive peptide expressed in several peripheral organs and known primarily for its beneficial vasoactive effects. However, ADM is also known to inhibit insulin secretion, and central administration of ADM has been shown to elicit anorexigenic effects. Here, we investigated if peripheral co-administration of ADM and glucagon-like peptide 1 (GLP-1) could subdue the hypoglycaemic effects of ADM while enhancing its anorectic properties. The effects of mono- and combination therapy of ADM and GLP-1 on appetite regulation and glucose homeostasis were assessed acutely in male NMRI mice for 12 h, while effects on glucose homeostasis were assessed by oral glucose tolerance tests (OGTT). While the monotherapy with GLP-1 and ADM resulted in modest anorexigenic effects, co-administration of the two peptides led to a marked additive reduction in food intake. Moreover, while OGTT-evoked blood glucose-excursions were significantly increased by ADM monotherapy, co-administration of ADM with a lower dose of GLP-1 normalized glucose excursions. In conclusion, we demonstrate additive anorectic effects of ADM and GLP-1, and that GLP-1 co-administration prevents ADM-induced impairment of glucose tolerance, suggesting that ADM could be potential anti-obesity target when combined with GLP-1 agonist therapy.