Abstract Interacting species of pollinator–host systems, especially the obligate ones, are sensitive to habitat fragmentation, due to the nature of mutual dependence. Comparative studies of genetic structure can provide insights into how habitat fragmentation contributes to patterns of genetic divergence among populations of the interacting species. In this study, we used microsatellites to analyse genetic variation in C hinese populations of a typical mutualistic system – F icus pumila and its obligate pollinator W iebesia sp. 1 – in a naturally fragmented landscape. The plants and wasps showed discordant patterns of genetic variation and geographical divergence. There was no significant positive relationship in genetic diversity between the two species. Significant isolation‐by‐distance ( IBD ) patterns occurred across the populations of F . pumila and W iebesia sp. 1 as whole, and IBD also occurred among island populations of the wasps, but not the plants. However, there was no significant positive relationship in genetic differentiation between them. The pollinator populations had significantly lower genetic variation in small habitat patches than in larger patches, and three island pollinator populations showed evidence of a recent bottleneck event. No effects of patch size or genetic bottlenecks were evident in the plant populations. Collectively, the results indicate that, in more fragmented habitats, the pollinators, but not the plants, have experienced reduced genetic variation. The contrasting patterns have multiple potential causes, including differences in longevity and hence number of generations experiencing fragmentation; different dispersal patterns, with the host's genes dispersed as seeds as well as a result of pollen dispersal via the pollinator; asymmetrical responses to fluctuations in partner populations; and co‐existence of a rare second pollinating wasp on some islands. These results indicate that strongly interdependent species may respond in markedly different ways to habitat fragmentation.
1. Echthrodesis lamorali Masner, 1968 is the only known parasitoid of the eggs of the intertidal rocky shore spider Desis formidabilis O.P. Cambridge 1890 and is endemic to a small area of South Africa. 2. The abundance of spider nests and parasitoid presence were assessed in relation to their in‐ and between‐shore location at multiple sites within the distribution of E. lamorali along the Cape Peninsula (Western Cape, South Africa). 3. Desis formidabilis nests were more abundant in the mid‐shore zone than higher up or lower down the shore. Spider population sizes also differed between collection sites, with higher numbers recorded on the cooler western coast of the peninsula. 4. Evidence of parasitoid activity was recorded in 43.31% of the 127 nests and 13.85% of the 592 egg sacs they contained. 5. Where parasitoids gained entry to a spider egg sac, oviposition took place into all of the eggs present. 6. Incidence of wasp activity was positively correlated with spider nest concentration, not with height up the shore, suggesting that both the host and parasitoid are tolerant of salt‐water inundation. 7. These results should assist managers of the Table Mountain National Park, in which the full distribution of E. lamorali falls, to better understand this component of rocky shore community dynamics.
SUMMARY The spread of bracken is a major problem in upland areas of Britain. We have investigated biological methods as an alterative to traditional forms of weed control. Details are given of the life histories of two potential candidates for introduction as biocontrol agents, the Southern African moths Conservula cinisigna and Panotima sp. near angularis. Results indicate that these species are highly host specific and potentially very destructive to bracken.
Abstract The interaction between figs ( F icus spp., M oraceae) and their pollinator fig wasps ( H ymenoptera: A gaonidae) is an obligate mutualism, but females of dioecious fig trees exploit fig wasps without providing rewards. Figs are closed inflorescences that typically trap pollinator females after entry, but some fig wasp species can re‐emerge (although wingless) and subsequently oviposit in and pollinate further figs. Using glasshouse populations, we examined the sex ratios and clutches laid by single foundresses of K radibia tentacularis ( G randi) in their first and subsequent male figs of F icus montana B lume, and how the probability of emergence and entering a second fig varied between seasons. A maximum of four figs were entered by any one foundress. Wingless foundresses were able to locate and enter figs up to 60 cm from the first fig they entered, but the probability of entry declined sharply with distance from that fig. The foundresses that re‐emerged produced slightly higher adult offspring totals than those that failed to re‐emerge. Clutch sizes of a single foundress in its first fig equalled those in all the subsequent figs combined, with clutch size per fig decreasing when more figs were entered. Smaller clutches had less female‐biased sex ratios. Figs were more numerous in summer than in winter, but the proportion of figs entered by only wingless foundresses remained unchanged. Movement between figs increases pollinator reproductive success in male figs, thereby encouraging foundresses that encounter a female tree to also move between and pollinate several female figs.
We investigated host-plant utilisation by the candidate biocontrol agent Paradibolia coerulea (Coleoptera: Chrysomelidae) on the target plant Spathodea campanulata Beauv. (Bignoniaceae) and a closely related non-target plant, Kigelia africana (Lam.) Benth. (Bignoniaceae). Paired-choice and sequential no-choice experiments were performed and coupled with olfactory discrimination experiments to test the insects' responses to volatiles from both plant species as well as to cues from conspecific beetles. Although K. africana was utilised by P. coerulea, S. campanulata was preferred for both adult feeding and oviposition. Interestingly, whereas females were attracted to olfactory cues emitted by S. campanulata, males demonstrated no such olfactory discrimination. Females were also attracted to cues deposited by males, and males were deterred by cues from other males, but neither sex responded to female olfactory cues. Very few eggs were recorded on K. africana and none of the larvae that hatched on K. africana survived the first instar. Both S. campanulata and K. africana are suitable for adult feeding, but persistent utilisation of K. africana in the field is unlikely because larval development is only possible on S. campanulata and because the adult females are strongly attracted to volatiles emitted by the target plant. Nevertheless, if P. coerulea is released as a biocontrol agent, spill-over adult feeding could potentially occur on K. africana growing sympatrically with S. campanulata. Because P. coerulea cannot complete its development on K. africana, non-target damage will only occur where the target plant is present, with an intensity dependent on densities of adult beetles locally.
Abstract Most plants are pollinated passively, but active pollination has evolved among insects that depend on ovule fertilization for larval development. Anther‐to‐ovule ratios (A/O ratios, a coarse indicator of pollen‐to‐ovule ratios) are strong indicators of pollination mode in fig trees and are consistent within most species. However, unusually high values and high variation of A/O ratios (0.096–10.0) were detected among male plants from 41 natural populations of Ficus tikoua in China. Higher proportions of male (staminate) flowers were associated with a change in their distribution within the figs, from circum‐ostiolar to scattered. Plants bearing figs with ostiolar or scattered male flowers were geographically separated, with scattered male flowers found mainly on the Yungui Plateau in the southwest of our sample area. The A/O ratios of most F. tikoua figs were indicative of passive pollination, but its Ceratosolen fig wasp pollinator actively loads pollen into its pollen pockets. Additional pollen was also carried on their body surface and pollinators emerging from scattered‐flower figs had more surface pollen. Large amounts of pollen grains on the insects' body surface are usually indicative of a passive pollinator. This is the first recorded case of an actively pollinated Ficus species producing large amounts of pollen. Overall high A/O ratios, particularly in some populations, in combination with actively pollinating pollinators, may reflect a response by the plant to insufficient quantities of pollen transported in the wasps’ pollen pockets, together with geographic variation in this pollen limitation. This suggests an unstable scenario that could lead to eventual loss of wasp active pollination behavior.
Astract Ecological theory predicts that communities using the same resources should have similar structure, but evolutionary constraints on colonisation and niche shifts may hamper such convergence. Multitrophic communities of wasps exploiting fig fruits, which first evolved about 75 MYA , do not show long‐term ‘inheritance’ of taxonomic (lineage) composition or species diversity. However, communities on three continents have converged ecologically in the presence and relative abundance of five insect guilds that we define. Some taxa fill the same niches in each community (phylogenetic niche conservatism). However, we show that overall convergence in ecological community structure depends also on a combination of niche shifts by resident lineages and local colonisations of figs by other insect lineages. Our study explores new ground, and develops new heuristic tools, in combining ecology and phylogeny to address patterns in the complex multitrophic communities of insect on plants, which comprise a large part of terrestrial biodiversity.