ABSTRACT Acinetobacter baumannii is a Gram-negative pathogen responsible for hospital-acquired infections with high levels of antimicrobial resistance (AMR). The spread of multidrug-resistant A. baumannii strains, particularly those resistant to carbapenems, has become a global concern. Spread of AMR in A. baumannii is primarily mediated by the acquisition of AMR genes through mobile genetic elements, such as plasmids. Thus, a comprehensive understanding of the role of different plasmid types in disseminating AMR genes is essential. In this study, we analysed the distribution of plasmid types, sampling sources, geographic locations, and AMR genes carried on A. baumannii plasmids. A collection of 814 complete plasmid entries was collated and analysed. Most plasmids were identified in clinical isolates from East Asia, North America, South Asia, West Europe, and Australia. We previously devised an Acinetobacter Plasmid Typing (APT) scheme where rep/ Rep types were defined using 95% nucleotide identity and updated the scheme in this study by adding 13 novel rep /Rep types (93 types total). The APT scheme now includes 178 Rep variants belonging to three families: R1, R3, and RP. R1-type plasmids were mainly associated with global clone 1 strains, while R3-type plasmids were highly diverse and carried a variety of AMR determinants including carbapenem, aminoglycoside and colistin resistance genes. Similarly, RP-type and rep-less plasmids were also identified as important carriers of aminoglycoside and carbapenem resistance genes. This study provides a comprehensive overview of the distribution and characteristics of A. baumannii plasmids, shedding light on their role in the dissemination of AMR genes. The updated APT scheme and novel findings enhance our understanding of the molecular epidemiology of A. baumannii and provide valuable insights for surveillance and control strategies. IMPORTANCE A. baumannii has emerged as a major cause of nosocomial infections, particularly in intensive care units, posing a substantial challenge to patient safety and healthcare systems. Plasmids, which carry antimicrobial resistance (AMR) genes, play a crucial role in the multidrug resistance exhibited by A. baumannii strains, necessitating a comprehensive understanding of plasmid spread, and how to track them. This study provides important insights into A. baumannii plasmid epidemiology, and the extent of their role in spreading clinically significant AMR genes and how they are differentially distributed across different clones i.e. sequence types (STs) and geographical regions. These insights are important for identifying high-risk areas or clones implicated in plasmid transmission, in the context of the spread of multidrug-resistant A. baumannii strains. It also highlights the involvement of R3-type, RP-type and rep-less plasmids in the acquisition and spread of significant AMR genes including those conferring resistance to carbapenems, aminoglycosides and colistin.
ABSTRACT Plasmids found in Acinetobacter species contribute to the spread of antibiotic resistance genes. They appear to be largely confined to this genus and cannot be typed with available tools and databases. Here, a method for distinguishing and typing these plasmids was developed using a curated, non-redundant set of 621 complete sequences of plasmids from Acinetobacter baumannii . Plasmids were separated into three groups based on the Pfam domains of the encoded replication initiation (Rep) protein and a fourth group that lack an identifiable Rep protein. The rep genes of each Rep-encoding group (n=13 Rep_1, n=107 RepPriCT_1, n=351 Rep_3) were then clustered using a threshold of >95% nucleotide identity to define 80 distinct types. Five Rep_1 subgroups, designated R1_T1 to R1-T5, were identified and a sixth reported recently was added. Each R1 type corresponded to a conserved small plasmid sequence. The RepPriCT_1 plasmids fell into 5 subgroups, designated RP-T1 to RP-T5 and the Rep_3 plasmids comprised 69 distinct types (R3-T1 to R3-T69). Three R1, 2 RP and 32 R3 types are represented by only a single plasmid. Over half of the plasmids belong to the four most abundant types: the RP-T1 plasmids (n=97), which include conjugation genes and are often associated with various acquired antibiotic resistance genes, and R3-T1, R3-T2 and R3-T3 (n=95, 30 and 45, respectively). To facilitate typing and the identification of plasmids in draft genomes using this framework, we established the Acinetobacter Typing database containing representative nucleotide and protein sequences of the type markers ( https://github.com/MehradHamidian/AcinetobacterPlasmidTyping ). IMPORTANCE Though they contribute to the dissemination of genes that confer resistance to clinically important carbapenem and aminoglycoside antibiotics used to treat life-threatening Acinetobacter baumannii infections, plasmids found in Acinetobacter species have not been well studied. As these plasmids do not resemble those found in other Gram-negative pathogens, available typing systems are unsuitable. The plasmid typing system developed for A. baumannii plasmids with an identifiable rep gene will facilitate the classification and tracking of sequenced plasmids. It will also enable the detection of plasmid-derived contigs present in draft genomes that are widely ignored currently. Hence, it will assist in the tracking of resistance genes and other genes that affect survival in the environment, as they spread through the population. As identical or similar plasmids have been found in other Acinetobacter species, the typing system will also be broadly applicable in identifying plasmids in other members of the genus.
Complete genome sequences for ST15 isolates from Norway with single plasmids encoding genes conferring antimicrobial resistance, hypervirulence-associated aerobactin synthesis (iuc locus) and hypermucoid phenotype through capsule upregulation (rmpA2)
ABSTRACT Non-carbapenemase-producing carbapenem-resistant Enterobacterales (non-CP CRE) may be associated with a grave outcome. The common underlying mechanism is beta-lactamases and mutations in outer membrane porins. We report a case of a deep-seated infection caused by Klebsiella pneumoniae ST395 not amenable to source control, involving recurrent bloodstream infection, resulting in in vivo selection of carbapenem resistance under therapy. Three consecutive K. pneumoniae blood isolates were studied using short- and long-read sequencing. The genomes were subject to resistome and virulome, phylogenetic, and plasmid analyses. ompK36 porins were analyzed at the nucleotide and amino acid levels. Genomes were compared to 297 public ST395 K. pneumoniae genomes using cgMLST, resistome, and porin analyses and the EuSCAPE project. Relevant ompK36 and micF sequences were extracted and analyzed as above. The three sequential K. pneumoniae blood isolates belonged to the same clone. Subsequent CR isolates revealed a new large deletion of the ompK36 gene also involving the upstream region (deletion of micF ). Comparison with public ST395 genomes revealed the study isolates belonged to clade B, representing a separate clone. N-terminal large ompK36 truncations were uncommon in both public data sets. In vivo selection of non-CP CRE K. pneumoniae could have substantial clinical implications. Such selection should be scrutinized through repeated cultures and frequent susceptibility testing during antimicrobial treatment, especially in the context of persistent or recurrent bloodstream infections and when adequate source control cannot be achieved. The occurrence of an unusually large deletion involving the ompK36 locus and upstream micF should be further studied.
Alcohol-based disinfectants and particularly hand rubs are a key way to control hospital infections worldwide. Such disinfectants restrict transmission of pathogens, such as multidrug-resistant Staphylococcus aureus and Enterococcus faecium. Despite this success, health care infections caused by E. faecium are increasing. We tested alcohol tolerance of 139 hospital isolates of E. faecium obtained between 1997 and 2015 and found that E. faecium isolates after 2010 were 10-fold more tolerant to killing by alcohol than were older isolates. Using a mouse gut colonization model of E. faecium transmission, we showed that alcohol-tolerant E. faecium resisted standard 70% isopropanol surface disinfection, resulting in greater mouse gut colonization compared to alcohol-sensitive E. faecium. We next looked for bacterial genomic signatures of adaptation. Alcohol-tolerant E. faecium accumulated mutations in genes involved in carbohydrate uptake and metabolism. Mutagenesis confirmed the roles of these genes in the tolerance of E. faecium to isopropanol. These findings suggest that bacterial adaptation is complicating infection control recommendations, necessitating additional procedures to prevent E. faecium from spreading in hospital settings.
Microbiology Society journals contain high-quality research papers and topical review articles. We are a not-for-profit publisher and we support and invest in the microbiology community, to the benefit of everyone. This supports our principal goal to develop, expand and strengthen the networks available to our members so that they can generate new knowledge about microbes and ensure that it is shared with other communities.