Abstract Background Many genetic variants have been reported from sequencing projects due to decreasing experimental costs. Compared to the current typical paradigm, read mapping incorporating existing variants can improve the performance of subsequent analysis. This method is supposed to map sequencing reads efficiently to a graphical index with a reference genome and known variation to increase alignment quality and variant calling accuracy. However, storing and indexing various types of variation require costly RAM space. Methods Aligning reads to a graph model-based index including the whole set of variants is ultimately an NP-hard problem in theory. Here, we propose a variation-aware read alignment algorithm (VARA), which generates the alignment between read and multiple genomic sequences simultaneously utilizing the schema of the Landau-Vishkin algorithm. VARA dynamically extracts regional variants to construct a pseudo tree-based structure on-the-fly for seed extension without loading the whole genome variation into memory space. Results We developed the novel high-throughput sequencing read aligner deBGA-VARA by integrating VARA into deBGA. The deBGA-VARA is benchmarked both on simulated reads and the NA12878 sequencing dataset. The experimental results demonstrate that read alignment incorporating genetic variation knowledge can achieve high sensitivity and accuracy. Conclusions Due to its efficiency, VARA provides a promising solution for further improvement of variant calling while maintaining small memory footprints. The deBGA-VARA is available at: https://github.com/hitbc/deBGA-VARA .
Tiled amplicon sequencing has served as an essential tool for tracking the spread and evolution of pathogens. Over 2 million complete SARS-CoV-2 genomes are now publicly available, most sequenced and assembled via tiled amplicon sequencing. While computational tools for tiled amplicon design exist, they require downstream manual optimization both computationally and experimentally, which is slow and costly. Here we present Olivar, a first step towards a fully automated, variant-aware design of tiled amplicons for pathogen genomes. Olivar converts each nucleotide of the target genome into a numeric risk score, capturing undesired sequence features that should be avoided. In a direct comparison with PrimalScheme, we show that Olivar has fewer SNPs overlapping with primers and predicted PCR byproducts. We also compared Olivar head-to-head with ARTIC v4.1, the most widely used primer set for SARS-CoV-2 sequencing, and show Olivar yields similar read mapping rates (~90%) and better coverage to the manually designed ARTIC v4.1 amplicons. We also evaluated Olivar on real wastewater samples and found that Olivar had up to 3-fold higher mapping rates while retaining similar coverage. In summary, Olivar automates and accelerates the generation of tiled amplicons, even in situations of high mutation frequency and/or density. Olivar is available as a web application at https://olivar.rice.edu. Olivar can also be installed locally as a command line tool with Bioconda. Source code, installation guide and usage are available at https://github.com/treangenlab/Olivar.
Abstract Wastewater surveillance is a powerful tool to assess the risks associated with antibiotic resistance in communities. One challenge is selecting which analytical tool to deploy to measure risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial hosts. Although metagenomics is frequently used for analyzing ARGs, few studies have compared the performance of long-read and short-read metagenomics in identifying which bacteria harbor ARGs in wastewater. Furthermore, for ARG host detection, untargeted metagenomics has not been compared to targeted methods such as epicPCR. Here, we 1) evaluated long-read and short-read metagenomics as well as epicPCR for detecting ARG hosts in wastewater, and 2) investigated the host range of ARGs across the WWTP to evaluate host proliferation. Results highlighted long-read revealed a wider range of ARG hosts compared to short-read metagenomics. Nonetheless, the ARG host range detected by long-read metagenomics only represented a subset of the hosts detected by epicPCR. The ARG-host linkages across the influent and effluent of the WWTP were characterized. Results showed the ARG-host phylum linkages were relatively consistent across the WWTP, whereas new ARG-host species linkages appeared in the WWTP effluent. The ARG-host linkages of several clinically relevant species found in the effluent were identified.
In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.
Abstract Background Long-read sequencing has enabled unprecedented surveys of structural variation across the entire human genome. To maximize the potential of long-read sequencing in this context, novel mapping methods have emerged that have primarily focused on either speed or accuracy. Various heuristics and scoring schemas have been implemented in widely used read mappers (minimap2 and NGMLR) to optimize for speed or accuracy, which have variable performance across different genomic regions and for specific structural variants. Our hypothesis is that constraining read mapping to the use of a single gap penalty across distinct mutational hotspots reduces read alignment accuracy and impedes structural variant detection. Findings We tested our hypothesis by implementing a read mapping pipeline called Vulcan that uses two distinct gap penalty modes, which we refer to as dual-mode alignment. The high-level idea is that Vulcan leverages the computed normalized edit distance of the mapped reads via e.g. minimap2 to identify poorly aligned reads and realigns them using the more accurate yet computationally more expensive long read mapper (NGMLR). In support of our hypothesis, we show Vulcan improves the alignments for Oxford Nanopore Technology (ONT) long-reads for both simulated and real datasets. These improvements, in turn, lead to improved accuracy for structural variant calling performance on human genome datasets compared to either of the read mapping methods alone. Conclusions Vulcan is the first long-read mapping framework that combines two distinct gap penalty modes, resulting in improved structural variant recall and precision. Vulcan is open-source and available under the MIT License at https://gitlab.com/treangenlab/vulcan
Most genome editing analyses to date are based on quantifying small insertions and deletions. Here, we show that CRISPR-Cas9 genome editing can induce large gene modifications, such as deletions, insertions, and complex local rearrangements in different primary cells and cell lines. We analyzed large deletion events in hematopoietic stem and progenitor cells (HSPCs) using different methods, including clonal genotyping, droplet digital polymerase chain reaction, single-molecule real-time sequencing with unique molecular identifier, and long-amplicon sequencing assay. Our results show that large deletions of up to several thousand bases occur with high frequencies at the Cas9 on-target cut sites on the HBB (11.7 to 35.4%), HBG (14.3%), and BCL11A (13.2%) genes in HSPCs and the PD-1 (15.2%) gene in T cells. Our findings have important implications to advancing genome editing technologies for treating human diseases, because unintended large gene modifications may persist, thus altering the biological functions and reducing the available therapeutic alleles.
Many genetic variants have been reported from sequencing projects due to decreasing experimental costs. Compared to the current typical paradigm, read mapping incorporating existing variants can improve the performance of subsequent analysis. However, storing and indexing various types of variation require costly RAM space. Aligning reads to a graph model-based index including the whole set of variants is ultimately an NP-hard problem in theory. This method is supposed to map sequencing reads efficiently to a graphical index with a reference genome and known variation to increase alignment quality and variant calling accuracy. Herein, we propose a variation-aware read alignment algorithm (VARA), which generates the alignment between read and multiple genomic sequences simultaneously utilizing the schema of the Landau-Vishkin algorithm. VARA dynamically extracts regional variants to construct a pseudo tree-based structure on-the-fly for seed extension without loading the whole genome variation into memory space. We developed the novel high-throughput sequencing read aligner deBGA-VARA by integrating VARA into deBGA. The deBGA-VARA is benchmarked both on simulated reads and the NA12878 sequencing dataset. The experimental results demonstrate that read alignment incorporating genetic variation knowledge can achieve high sensitivity and accuracy. Moreover, due to its efficiency, VARA provides a promising solution for further improvement of variant calling while maintaining small memory footprints. The deBGA-VARA is available at: https://github.com/hitbc/deBGA-VARA.