To assess the impact of the antenatal HIV screening programme in Norway in preventing HIV infection in children.Norway, 1987-99.In a simulated retrospective cohort design data were used from the mandatory HIV surveillance system to compare the observed number of children born infected with HIV in Norway 1987-99 to the expected number without the antenatal screening programme. The main measures were relative and absolute performance of the screening programme. Other measures were uptake and false positive rate of screening, and number and exposure category of screen positive women.96% of 961 000 eligible pregnant women were tested. 0.1% had an indeterminate test result and 46 women (5.0/100 000) were confirmed screen positive. 27 were African or south east Asian women infected before immigration to Norway. Nine out of 739 000 live born children (1.2/100 000) were infected compared with the expected 18 with no screening. The absolute impact of the screening programme was 1.3 (95% confidence interval (95% CI) -0.1 to 2.7) prevented infections in 100 000 women screened. The relative preventive impact was 51% (-15% to 81%).The limited absolute impact is because of the very low prevalence of undetected HIV infection among pregnant women in Norway.
Biological characteristics of virus quantitatively rescued from different cell types present in lymph nodes of HIV-1-infected individuals in various stages of their disease were determined, not including patients with AIDS defining illness. Viruses were obtained by cocultivation with donor monocyte-derived macrophages and T-lymphocytes and their biological phenotype compared to viruses obtained from the peripheral blood mononuclear cells of the same patient. The biological phenotype was determined on established cell lines (U937-2, CEM, and MT-2) and on the U87.CD4 coreceptor indicator cell lines and variable region 3 (V3) of the envelope was subjected to direct sequencing. All isolates obtained from lymph node subsets used CCR5 as coreceptor. Furthermore, these viruses were also sensitive to inhibition by β-chemokines as analyzed for viruses of one patient. All 12 V3 regions showed a unique sequence indicating compartmentalization within each patient. The biological phenotype of CCR5-dependent (R5) HIV-1 isolates obtained from PBMC resembles the phenotype of viruses isolated from different lymph node cell subsets.
The V3 region of the human immunodeficiency virus type 1 envelope protein gp120 constitutes a potential neutralization target, but the oligosaccharide of one conserved N-glycosylation site in this region protects it from neutralizing antibodies. Here, we determined whether N-linked glycans of other gp120 domains were also involved in protection of V3 neutralization epitopes. Two molecular clones of HIV-1, one lacking three N-linked glycans of the V1 region (HIV-13N/V1) and another lacking three N-linked glycans of the C2 region (HIV-13N/C2), were created and characterized. gp120 from both mutated viral clones had higher electrophoretic mobilities than gp120 from wild-type virus, confirming loss of N-linked glycans. Wild-type virus and both mutant clones replicated equally well in established T cell lines and all three viruses were able to utilize CXCR4 but not CCR5 as a coreceptor. The induced mutations increased gp120 affinity for CXCR4 but caused no corresponding increase in viral ability to replicate in T cell lines. HIV-13N/V1 was neutralized at about 25 times lower concentrations of an antibody to the V3 region than were wild-type virus and HIV-13N/C2. Soluble, monomeric gp120 from HIV-13N/V1 and wild type virus had identical avidity for the V3 antibody, indicating that the V1 glycans were able to shield V3 only in oligomeric but not monomeric gp120. In conclusion, one or more N-linked glycans of gp120 V1 is engaged in protection of the V3 region from potential neutralizing antibodies, and this effect is dependent on the oligomeric organization of gp120/gp41.
Conflicting data have been published concerning the correlation between the length of the second variable region (V2) in the HIV-1 envelope and the biological phenotype of the virus. Here the V2 region length of primary HIV-1 isolates was compared with biological phenotype and coreceptor usage. The V2 region variation was determined by DNA fragment length analysis, virus biological phenotype by the MT-2 cell assay, and coreceptor usage by infection of U87.CD4 cells expressing CCR3, CCR5, or CXCR4. Ninety-three primary virus isolates from 40 patients were analyzed. This panel of viruses included sequential isolates obtained from patients who progressed to AIDS with or without a virus phenotypic switch. We found that NSI MT-2-negative isolates had significantly shorter V2 regions than SI MT-2-positive isolates. However, when V2 region lengths of viruses were analyzed in more detail, we observed that NSI isolates obtained from patients shortly before the phenotypic switch had V2 region lengths similar to those of SI isolates. V2 regions of NSI isolates obtained from patients who progressed to AIDS without a virus phenotypic switch had, in contrast, shorter V2 region than isolates obtained just before virus phenotypic switch. Coreceptor analysis revealed that CCR5-using (R5) isolates generally had shorter V2 regions than virus isolates with the ability to enter CXCR4-expressing cells. Moreover, no significant difference in V2 region length was observed between monotropic SI isolates, that is, X4 isolates, and multitropic SI isolates, that is, R3R5X4 or R5X4 isolates. Thus, we conclude that R5 NSI isolates obtained from patients with stable virus phenotype through the whole disease course display shorter V2 regions than isolates obtained from patients at switch of virus phenotype, suggesting that V2 region length may influence virus coreceptor usage.
Abstract More knowledge regarding persistence of antibody response to SARS-CoV-2 infections in the general population with mild symptoms is needed. We measured and compared levels of SARS-CoV-2 spike- and nucleocapsid-specific IgG-antibodies in serum samples from 145 laboratory-confirmed COVID-19 cases and 324 non-cases. The IgG-antibody levels against the spike protein in cases were stable over the time-period studied (14 to 256 days), while antibody levels against the nucleocapsid protein decreased over time.
Laboratory response networks (LRNs) have been established for security reasons in several countries including the Netherlands, France, and Sweden. LRNs function in these countries as a preparedness measure for a coordinated diagnostic response capability in case of a bioterrorism incident or other biocrimes. Generally, these LRNs are organized on a national level. The EU project AniBioThreat has identified the need for an integrated European LRN to strengthen preparedness against animal bioterrorism. One task of the AniBioThreat project is to suggest a plan to implement laboratory biorisk management CWA 15793:2011 (CWA 15793), a management system built on the principle of continual improvement through the Plan-Do-Check-Act (PDCA) cycle. The implementation of CWA 15793 can facilitate trust and credibility in a future European LRN and is an assurance that the work done at the laboratories is performed in a structured way with continuous improvements. As a first step, a gap analysis was performed to establish the current compliance status of biosafety and laboratory biosecurity management with CWA 15793 in 5 AniBioThreat partner institutes in France (ANSES), the Netherlands (CVI and RIVM), and Sweden (SMI and SVA). All 5 partners are national and/or international laboratory reference institutes in the field of public or animal health and possess high-containment laboratories and animal facilities. The gap analysis showed that the participating institutes already have robust biorisk management programs in place, but several gaps were identified that need to be addressed. Despite differences between the participating institutes in their compliance status, these variations are not significant. Biorisk management exercises also have been identified as a useful tool to control compliance status and thereby implementation of CWA 15793. An exercise concerning an insider threat and loss of a biological agent was performed at SVA in the AniBioThreat project to evaluate implementation of the contingency plans and as an activity in the implementation process of CWA 15793. The outcome of the exercise was perceived as very useful, and improvements to enhance biorisk preparedness were identified. Gap analyses and exercises are important, useful activities to facilitate implementation of CWA 15793. The PDCA cycle will enforce a structured way to work, with continual improvements concerning biorisk management activities. Based on the activities in the AniBioThreat project, the following requirements are suggested to promote implementation: support from the top management of the organizations, knowledge about CWA 15793, a compliance audit checklist and gap analysis, training and exercises, networking in LRNs and other networks, and interinstitutional audits. Implementation of CWA 15793 at each institute would strengthen the European animal bioterrorism response capabilities by establishing a well-prepared LRN.
The National Institute of Public Health has had a completely smoke-free environment since 1990. A survey of attitudes among employees shows that this was a positive experience. Nevertheless, smokers and non-smokers alike argue that the interests of smokers should have been taken better care of.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.