Growth, root aerenchyma, and profiles of radial O2 loss (ROL) along adventitious roots were evaluated in 35 'wild' Hordeum accessions and cultivated barley (H. vulgare L. ssp. vulgare) when grown in stagnant nutrient solution (deoxygenated and containing 0.1% agar). When grown in stagnant solution, accessions from wetland and 'intermediate' habitats were superior, compared with accessions from non-wetland habitats, in maintaining relative growth rate, tillering, and adventitious root mass. Constitutive aerenchyma formation in adventitious roots was ≥10% in 22 accessions (cf. H. vulgare at 2%). When grown in stagnant solution, aerenchyma was ≥ 20% in the adventitious roots of 14 accessions (cf. H. vulgare at 12%). Variation among the accessions in the volume of aerenchyma formed when grown in aerated or stagnant solution was not determined by the waterlogging regime of the species' natural habitat. However, the genus Hordeum comprises four genomes and when grown in stagnant solution accessions with the X genome formed, on average, 22% aerenchyma in adventitious roots (50 mm behind apex), whereas those with the H genome averaged 19%, and those with the Y or I genomes averaged 16 and 15%, respectively. Sixteen accessions formed a barrier to ROL in the basal region of adventitious roots when grown in stagnant solution. The formation of a barrier to radial O2 loss was predominant in accessions from wet habitats, and absent in accessions from non-wetland habitats. In addition, this trait was only present in accessions with the X or H genomes. The combination of aerenchyma and a barrier to ROL enhances the longitudinal diffusion of O2 within roots towards the apex. The possibility of a link between having a barrier to ROL and the X or H genomes in Hordeum species might, in future studies, enable a genetic analysis of this important trait.
Partial shoot submergence is considered less stressful than complete submergence of plants, as aerial contact allows gas exchange with the atmosphere. In situ microelectrode studies of the wetland plant Meionectes brownii showed that O(2) dynamics in the submerged stems and aquatic roots of partially submerged plants were similar to those of completely submerged plants, with internal O(2) concentrations in both organs dropping to less than 5 kPa by dawn regardless of submergence level. The anatomy at the nodes and the relationship between tissue porosity and rates of O(2) diffusion through stems were studied. Stem internodes contained aerenchyma and had mean gas space area of 17.7% per cross section, whereas nodes had 8.2%, but nodal porosity was highly variable, some nodes had very low porosity or were completely occluded (ca. 23% of nodes sampled). The cumulative effect of these low porosity nodes would have impeded internal O(2) movement down stems. Therefore, regardless of the presence of an aerial connection, the deeper portions of submerged organs sourced most of their O(2) via inwards diffusion from the water column during the night, and endogenous production in underwater photosynthesis during the daytime.
• Adventitious roots of rice (Oryza sativa) acclimatize to root-zone O2 deficiency by increasing porosity, and induction of a barrier to radial O2 loss (ROL) in basal zones, to enhance longitudinal O2 diffusion towards the root tip. • Changes in root-zone gas composition that might induce these acclimatizations, namely low O2, elevated ethylene, ethylene—low O2 interactions, and high CO2, were evaluated in hydroponic experiments. • Neither low O2 (0 or 0.028 mol m−3 O2), ethylene (0.2 or 2.0 µl l−1), or combinations of these treatments, induced the barrier to ROL. This lack of induction of the barrier to ROL was despite a positive response of aerenchyma formation to low O2 and elevated ethylene. Carbon dioxide at 10 kPa had no effect on root porosity, the barrier to ROL, or on growth. • Our findings that ethylene does not induce the barrier to ROL in roots of rice, even though it can enhance aerenchyma formation, shows that these two acclimatizations for improved root aeration are differentially regulated.
Mosses are among the earliest branching embryophytes and probably originated not later than the early Ordovician when atmospheric CO2 was higher and O2 was lower than today. The C3 biochemistry and physiology of their photosynthesis suggests, by analogy with tracheophytes, that growth of extant bryophytes in high CO2 approximating Ordovician values would increase the growth rate. This occurs for many mosses, including Physcomitrella patens in suspension culture, although recently published transcriptomic data on this species at high CO2 and present-day CO2 show down-regulation of the transcription of several genes related to photosynthesis. It would be useful if transcriptomic (and proteomic) data comparing growth conditions are linked to measurements of growth and physiology on the same, or parallel, cultures. Mosses (like later-originating embryophytes) have been subject to changes in bulk atmospheric CO2 and O2 throughout their existence, with evidence, albeit limited, for positive selection of moss Rubisco. Extant mosses are subject to a large range of CO2 and O2 concentrations in their immediate environments, especially aquatic mosses, and mosses are particularly influenced by CO2 generated by, and O2 consumed by, soil chemoorganotrophy from organic C produced by tracheophytes (if present) and bryophytes.
Abstract Waterlogging on croplands is increasing in various areas of the world. This study evaluated the yield penalty by early and late waterlogging on wheat ( Triticum aestivum L.), barley ( Hordeum vulgare L.), rapeseed ( Brassica napus L.) and field pea ( Pisum sativum L.). Plants cultivated outdoors were exposed to a 14‐day waterlogging during vegetative (at 65 days after sowing (DAS)) or reproductive (at 85/87 DAS) stages, followed by drained conditions until maturity. Yield (seed weight per plant) and its components (number of spikes/siliques/pods per plant, number of grains per spike/silique/pod and 1,000 grain weight) were assessed at maturity, along with morphological (number of tillers/branches) and shoot and root dry weight responses after waterlogging and during recovery. Wheat was the most tolerant species achieving 86% and 71% of controls in yield with early and late waterlogging, related to fewer grains per spike. Barley and rapeseed tolerated early waterlogging (yields 85% and 79% of controls) as compared to late waterlogging (32% and 26% of controls), mainly due to fewer spikes per plant (barley) or reductions in seeds per silique (rapeseed). Field pea was greatly affected by waterlogging at both timings, attaining a yield of only 6% of controls on average due to much fewer pods and fewer seeds per pod. So, wheat could be an option for areas facing either winter or spring transient waterlogging (i.e. early or late stages); barley and rapeseed are recommended only with if water excess occurs in early stages and field pea is intolerant to waterlogging.
Abstract Assessments of the anatomy, porosity and profiles of radial O 2 loss from adventitious roots of 10 species in the Poaceae (from four subfamilies) and two species in the Cyperaceae identified a combination of features characteristic of species that inhabit wetland environments. These include a strong barrier to radial O 2 loss in the basal regions of the adventitious roots and extensive aerenchyma formation when grown not only in stagnant but also in aerated nutrient solution. Adventitious root porosity was greater for plants grown in stagnant compared with aerated solution, for all 10 species in the Poaceae. The ‘wetland root’ archetype was best developed in Oryza sativa and the two species of the Cyperaceae, in which the stele contributed less than 5% of the root cross‐sectional area, the cells of the inner cortex were packed in a cuboidal arrangement, and aerenchyma was up to 35–52%. Variations of this root structure, in which the proportional and absolute area of stele was greater, with hexagonal arrangements of cells in the inner cortex and varying in the extent of aerenchyma formation, were present in the other wetland species from the subfamilies Pooideae, Panicoideae and Arundinoideae. Of particular interest were Vetiveria zizanoides and V. filipes , wetland grass species from the tribe Andropogoneae (the same tribe as sorghum, maize and sugarcane), that had a variant of the root anatomy found in rice. The results are promising with regard to enhancing these traits in waterlogging intolerant crops.
AbstractThe alternative oxidase (AOX) is the terminal oxidase that comprises the cyanide-resistant respiratory pathway in plant mitochondria. While the role of AOX in plant thermogenesis is well established, its role in the reproductive development of non-thermogenic species is not well understood. AOX genes can be separated into two groups based on sequence homology, AOX1 and AOX2. Reverse genetic experiments carried out primarily in Arabidopsis and tobacco have largely focussed on examining the role of AOX1-type genes in stress responses. We recently reported a systematic characterisation of the reproductive phenotypes of three AOX2 antisense lines of soybean. This addendum summarises the key evidence in our recent paper that points to a role for AOX in the development and function of both male and female gametophytes. Furthermore, we discuss the relative importance of AOX in the reproductive biology of plant species examined to date and highlight practical implications of our findings to crop improvement research.This article is related to: