The regulation of apple (Malus domestica) fruit texture during ripening is complex and a fundamental determinant of its commercial quality. In climacteric fruit, ripening-related processes are regulated by ethylene (ET), and jasmonate (JA) is also involved in the ethylene biosynthesis pathway, mainly through the transcription factor MYC2. However, the molecular genetic mechanism for fruit ripening processes between the JA and ET signaling pathways still needs to be elucidated. In order to explore how JA regulates apple fruit ripening through ERF4, we used 'Gala' and 'Ralls Janet' fruit at different developmental stages as experimental materials to determine the fruit firmness and related gene expression analysis. Meanwhile, we carried out different hormone treatments on 'Gala' fruit at ripening stage. Here, we show that ERF4 is a core JA signaling hub protein JASMONATE ZIM-DOMAIN (JAZ) interactor that affects ethylene signaling pathways. During fruit development, ERF4 represses the expression of ACS1 and ACO1 by interacting with JAZ, as well as with the JA-activated transcription factor MYC2. Ripening is promoted in JAZ-suppressed apples. Thus, ERF4 acts as a molecular link between ethylene and JA hormone signals, and the natural variation of the ERF4 Ethylene-responsive binding factor-associated amphiphilic repression (EAR) motif decreases repression of ethylene biosynthesis genes.
Anthocyanin biosynthesis exhibits a rhythmic oscillation pattern in some plants. To investigate the correlation between the oscillatory regulatory network and anthocyanin biosynthesis in pear, the anthocyanin accumulation and the expression patterns of anthocyanin late biosynthetic genes (ALBGs) were investigated in fruit skin of ‘Red Zaosu’ (Pyrus bretschneideri Rehd.). The anthocyanin accumulated mainly during the night over three continuous days in the fruit skin, and the ALBGs’ expression patterns in ‘Red Zaosu’ fruit skin were oscillatory. However, the expression levels of typical anthocyanin-related transcription factors did not follow this pattern. Here, we found that the expression patterns of four PbREVEILLEs (PbRVEs), members of a class of atypical anthocyanin-regulated MYBs, were consistent with those of ALBGs in ‘Red Zaosu’ fruit skin over three continuous days. Additionally, transient expression assays indicated that the four PbRVEs promoted anthocyanin biosynthesis by regulating the expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and anthocyanidin synthase (ANS) in red pear fruit skin, which was verified using a dual-luciferase reporter assay. Moreover, a yeast one-hybrid assay indicated that PbRVE1a, 1b and 7 directly bound to PbDFR and PbANS promoters. Thus, PbRVEs promote anthocyanin accumulation at night by up-regulating the expression levels of PbDFR and PbANS in ‘Red Zaosu’ fruit skin.
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.
We conducted bioinformatics analysis of the gene chip data of empagliflozin for diabetic nephropathy (DN). The differentially expressed genes (DEGs) between DN and control mice and between DN and DN treated with empagliflozin (DNE) mice were screened to explore the related metabolic pathogenesis and predict the potential competing endogenous RNA (ceRNA)-related networks' metabolic mechanism of the empagliflozin effect on DN.The intersection of DEGs in mice between the control and DN groups and between the DN and DNE groups was selected. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were performed, and the metabolic items involving the most genes in the coregulation were considered. A protein-interaction network was constructed with the STRING website. Cytoscape software and its plug-ins were utilised to analyse the hotspot differential genes. The noncoding RNAs in which the differential genes may play a role were obtained from the miRanda, miRDB, and TargetScan databases to establish network diagrams.Analysis of the diabetes and control groups showed that 424 genes were upregulated and 354 were downregulated. In the analysis of DEGs between the DN and diabetic groups, the comparison between the diabetic and empagliflozin groups showed that 430 genes were upregulated and 84 were downregulated. The co-downregulated enrichment results were primarily reflected in various metabolic disorders, including glucose metabolism, lipid metabolism, amino acid metabolism, and others. The co-upregulated genes were associated with the inflammatory response, apoptosis, and cell senescence. This finding indicated that empagliflozin may inhibit the progression of diabetic nephropathy by inhibiting inflammation, apoptosis, and senescence. The key genes and related mechanisms of noncoding RNA were determined through Cytoscape analysis and the prediction of common DEGs in metabolic items.The analysis of DEGs and key core genes in this study enhanced our understanding of the effect of empagliflozin on the pathogenesis of DN and provided more potential gene targets and application ideas for DN treatment.
Abstract Background The cold tolerance of rice is closely related to its production and geographic distribution. The identification of cold tolerance-related genes is of important significance for developing cold-tolerant rice. Dongxiang wild rice ( Oryza rufipogon Griff.) (DXWR) is well-adapted to the cold climate of northernmost-latitude habitats ever found in the world, and is one of the most valuable rice germplasms for cold tolerance improvement. Results Transcriptome analysis revealed genes differentially expressed between Xieqingzao B (XB; a cold sensitive variety) and 19H19 (derived from an interspecific cross between DXWR and XB) in the room temperature (RT), low temperature (LT), and recovery treatments. The results demonstrated that chloroplast genes might be involved in the regulation of cold tolerance in rice. A high-resolution SNP genetic map was constructed using 120 BC 5 F 2 lines derived from a cross between 19H19 and XB based on the genotyping-by-sequencing (GBS) technique. Two quantitative trait loci (QTLs) for cold tolerance at the early seedling stage (CTS), qCTS12 and qCTS8 , were detected. Moreover, a total of 112 candidate genes associated with cold tolerance were identified based on bulked segregant analysis sequencing (BSA-seq). These candidate genes were divided into eight functional categories, and the expression trend of candidate genes related to ‘oxidation-reduction process’ and ‘response to stress’ differed between XB and 19H19 in the RT, LT and recovery treatments. Among these candidate genes, the expression level of LOC_Os12g18729 in 19H19 (related to ‘response to stress’) decreased in the LT treatment but restored and enhanced during the recovery treatment whereas the expression level of LOC_Os12g18729 in XB declined during recovery treatment. Additionally, XB contained a 42-bp deletion in the third exon of LOC_Os12g18729 , and the genotype of BC 5 F 2 individuals with a survival percentage (SP) lower than 15% was consistent with that of XB. Weighted gene coexpression network analysis (WGCNA) and modular regulatory network learning with per gene information (MERLIN) algorithm revealed a gene interaction/coexpression network regulating cold tolerance in rice. In the network, differentially expressed genes (DEGs) related to ‘oxidation-reduction process’, ‘response to stress’ and ‘protein phosphorylation’ interacted with LOC_Os12g18729 . Moreover, the knockout mutant of LOC_Os12g18729 decreased cold tolerance in early rice seedling stage signifcantly compared with that of wild type. Conclusions In general, study of the genetic basis of cold tolerance of rice is important for the development of cold-tolerant rice varieties. In the present study, QTL mapping, BSA-seq and RNA-seq were integrated to identify two CTS QTLs qCTS8 and qCTS12 . Furthermore, qRT-PCR, genotype sequencing and knockout analysis indicated that LOC_Os12g18729 could be the candidate gene of qCTS12 . These results are expected to further exploration of the genetic mechanism of CTS in rice and improve cold tolerance of cultivated rice by introducing the cold tolerant genes from DXWR through marker-assisted selection.
ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a single-protein repair system that safeguards cellular DNA and RNA against the harmful effects of alkylating agents. ALKBH10B, the first discovered N6-methyladenosine (m6A) demethylase in Arabidopsis (Arabidopsis thaliana), has been shown to regulate plant growth, development, and stress responses. However, until now, the functional role of the plant ALKBH10B has solely been reported in arabidopsis, cotton, and poplar, leaving its functional implications in other plant species shrouded in mystery. In this study, we identified the AlkB homolog SlALKBH10B in tomato (Solanum lycopersicum) through phylogenetic and gene expression analyses. SlALKBH10B exhibited a wide range of expression patterns and was induced by exogenous abscisic acid (ABA) and abiotic stresses. By employing CRISPR/Cas9 gene editing techniques to knock out SlALKBH10B, we observed an increased sensitivity of mutants to ABA treatment and upregulation of gene expression related to ABA synthesis and response. Furthermore, the Slalkbh10b mutants displayed an enhanced tolerance to drought and salt stress, characterized by higher water retention, accumulation of photosynthetic products, proline accumulation, and lower levels of reactive oxygen species and cellular damage. Collectively, these findings provide insights into the negative impact of SlALKBH10B on drought and salt tolerance in tomato plant, expanding our understanding of the biological functionality of SlALKBH10B.
The firmness of fleshy fruit crops has a significant effect on their quality, consumer preference, shelf life and transportability. In a combined quantitative trait locus and genome-wide association studies study of apple fruit texture, we identified a mutation (C-G) in the ethylene response factor-associated amphiphilic repression (EAR) motif in the coding region of the apple ETHYLENE RESPONSE FACTOR4 (ERF4) gene. Chromatin immunoprecipitation sequencing showed that ERF4 binds to the promoter of ERF3, which is involved in regulation of ethylene biosynthesis. The EAR mutation in ERF4 results in reduced repression of ERF3 expression, which is turn promotes ethylene production and loss of fruit firmness. ERF4 acts as a transcriptional repressor whose activity is modulated by a TOPLESS co-repressor 4 (TPL4)-binding EAR repression motif. Biolayer interferometry analysis showed that the mutation in the EAR motif causes a reduction in the interaction with TPL4. Suppression of ERF4 or TPL4 promoted fruit ripening and ethylene production. Taken together, our results provide insights into how ERF4 allelic variation underlies an important fruit quality trait.
Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings.