Thrombin generation (TG) documents hypercoagulability. TG in platelet-poor plasma is exquisitely sensitive to heparins, which thus must be neutralized before testing. Heparinase and hexadimethrine bromide (polybrene) have been used for that purpose, but their effects per se on TG have been poorly studied so far.(i) TG was studied in commercial normal pooled plasma (NPP; CryoCheck® , Cryopep) in absence or presence of neutralizing agents. (ii) NPP was spiked with increasing concentrations of unfractionated heparin (UFH; up to 1.0 IU/mL) or low-molecular-weight heparin (LMWH; enoxaparin up to 1.2 IU/mL) and TG studied after incubation of heparinase (Hepzyme® ; 15 minutes) or polybrene (0.025 mg/mL; 10 minutes).(i) With ThromboScreen reagent to initiate TG, addition of heparinase was associated with increased peak, whereas polybrene caused lengthening of lag time and time to peak, compared with nonsupplemented NPP. (ii) With polybrene, TG was completely restored over the whole range of UFH and LMWH studied. By contrast, heparinase failed to fully restore TG in presence of UFH concentrations ≥0.8 IU/mL or LMWH concentrations ≥1.0 IU/mL. Those effects were matched with detectable tiny residual amounts of non-neutralized heparin (as assessed with an anti-Xa assay) and were less pronounced with a higher picomolar concentration of tissue factor (DrugScreen reagent).Polybrene fully restored TG of heparinized plasma at the expense of an alteration of TG, pointing to the need to use adapted reference ranges. Heparinase failed to do so in presence of high concentrations of both heparins.
Abstract Data about the duration of humoral response following COVID-19 vaccines are mandatory to establish appropriate population vaccination strategy. This study reports on the antibody decline observed in a population of COVID-19 naïve and COVID-19 positive individuals having received the two dose regimen of the BNT162b2 vaccine. Six months after vaccination, a significant antibody decline was observed in both COVID-19 naïve and positive individuals. The estimated half-life of total and IgG antibodies differs and ranges from several months for total antibodies to only several weeks for IgG antibodies, explaining the significant proportions of participants with non-detectable levels of neutralizing antibodies at 6 months. Whether this decrease correlates with an equivalent drop in the clinical effectiveness against the virus will require appropriate clinical studies. Nevertheless, these data are already important to support the decision-making on the potential use of a booster dose.
Several direct oral anticoagulants (DOACs) are now widely used in the prevention and treatment of thromboembolic events. Unlike vitamin K antagonists, DOACs exhibit predictable pharmacokinetics and pharmacodynamics. DOACs are to be administered at fixed doses without routine coagulation monitoring. However, in some patient populations or specific clinical circumstances, measurement of drug exposure may be useful, such as in suspected overdose, in patients with a haemorrhagic or thromboembolic event during treatment with an anticoagulant, in those with acute renal failure, or in patients who require urgent surgery. This article provides practical guidance on laboratory testing of DOACs in routine practice and summarizes the influence of DOACs on commonly used coagulation assays.