Quantum wells (QWs) based on mercury telluride (HgTe) thin films provide a large scale of unusual physical properties starting from an insulator via a two-dimensional Dirac semimetal to a three-dimensional topological insulator. These properties result from the dramatic change of the QW band structure with the HgTe film thickness. Although being a key property, these energy dispersion relations cannot be reflected in experiments due to the lack of appropriate tools. Here we report an experimental and theoretical study of two HgTe quantum wells with inverted energy spectrum in which two-dimensional semimetallic states are realized. Using magneto-optical spectroscopy at sub-THz frequencies we were able to obtain information about electron and hole cyclotron masses at all relevant Fermi level positions and different charge densities. The outcome is also supported by a Shubnikov-de Haas analysis of capacitance measurements, which allows obtaining information about the degeneracy of the active modes. From these data, it is possible to reconstruct electron and hole dispersion relations. Detailed comparative analysis of the energy dispersion relations with theoretical calculations demonstrates a good agreement, reflecting even several subtle features like band splitting, the second conduction band, and the overlaps between the first conduction and first valence band. Our study demonstrates that the cyclotron resonance experiments can be efficiently used to directly obtain the band structures of semimetallic 2D materials.
Phase waveplates for THz beam shaping were developed, calculated, and implemented. Developed phase plates could be 3D-printed from commercially available polymers, which makes them affordable and fully customized. These waveplates allow to widely and easily manipulate THz beam shape.
Spin-orbit coupling in thin HgTe quantum wells results in a relativistic-like electron band structure, making it a versatile solid state platform to observe and control nontrivial electrodynamic phenomena. Here we report an observation of universal terahertz (THz) transparency determined by fine-structure constant $\ensuremath{\alpha}\ensuremath{\approx}1/137$ in 6.5-nm-thick HgTe layer, close to the critical thickness separating phases with topologically different electronic band structure. Using THz spectroscopy in a magnetic field we obtain direct evidence of asymmetric spin splitting of the Dirac cone. This particle-hole asymmetry facilitates optical control of edge spin currents in the quantum wells.
We report the experimental discovery of ``superluminal'' electromagnetic 2D plasma waves in the electromagnetic response of a high-quality $\mathrm{GaAs}/\mathrm{AlGaAs}$ two-dimensional electron system on a dielectric substrate. We measure the plasma wave spectrum on samples with different electron density. It is established that, at large two-dimensional densities, there is a strong hybridization between the plasma and the Fabry-Perot light modes. In the presence of a perpendicular magnetic field, the plasma resonance is shown to split into two modes, each corresponding to a particular sense of circular polarization. Experimental results are found to be in good agreement with the theory.
We report on dynamic Shubnikov - de Haas (SdH) oscillations that are measured in the optical response, sub - terahertz transmittance of two-dimensional systems, and reveal two distinct types of oscillation nodes: "universal" nodes at integer ratios of radiation and cyclotron frequencies and "tunable" nodes at positions sensitive to all parameters of the structure. The nodes in both real and imaginary parts of the measured complex transmittance are analyzed using a dynamic version of the static Lifshitz-Kosevich formula. These results demonstrate that the node structure of the dynamic SdH oscillations provides an all-optical access to quantization- and interaction-induced renormalization effects, in addition to parameters one can obtain from the static SdH oscillations.
A sub-terahertz holographic image of a two-dimensional 576-bit data code is produced using a diffractive phase-plate element. The phase plate was designed using a modified Gerchberg-Saxton iterative algorithm to encode a focused image of the data code into a phase modulation profile. The complex phase plate structure is fabricated from polylactic acid using fused deposition modeling, a common three-dimensional-printing technique. The design achieves a significantly simplified optical setup, consisting of a 0.14 THz diverging source, the holographic phase plate and a scanning detector, without the need for additional optical elements. The information stored in the data code is an example of a cryptographic private key. Specifically, the private key for a Bitcoin wallet address. Successful retrieval of the encoded information demonstrates a potential use case for terahertz holographic memory, using a storage medium that can be fabricated with consumer-level three-dimensional-printing techniques.
We investigate the superradiance effects in three-dimensional topological insulator HgTe with conducting surface states. We demonstrate that the superradiance can be explained using the classical electrodynamic approach. Experiments using the continuous-wave spectroscopy allowed us to separate the energy losses in the system into intrinsic and radiation losses, respectively. These results demonstrate that the superradiance effects are not sensitive to the details of the band structure of the material.