Irradiation as a cold sterilization technology is increasingly used in chicken breast. However, the odor of animal food produced by irradiation is rarely reported. The volatile compounds in chicken breast at different irradiation doses were analyzed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography-ion mobility spectroscopy. 91 aroma compounds were detected. Sensory evaluation experiments were conducted on irradiated chicken breasts, and partial least squares regression analysis (PLSR) was performed in combination with the volatile compound concentration to identify the characteristic compounds that contributed significantly to the fruity, musty, greasy, chicken flavor and paint flavor of chicken breasts. The result indicated that trans-2-octenal, 1-octen-3-ol, nonanal, and 3-hydroxy-2-butanone may be the characteristic compounds for irradiated chicken breasts generating irradiated off-flavors. This study will lay a theoretical foundation for reducing the odor flavor of chicken breast by irradiation sterilization and guide the development of corresponding odor control methods.
The present study investigated the impact of four chicken liver protein hydrolysate-based cat food attractants on palatability. Aroma compounds were analyzed in these attractants, which were subsequently sprayed onto four different types of cat foods. Results revealed that CF4 exhibited the highest intake ratio and the first choice ratio, followed by CF2 sample. Orthogonal partial least-squares discriminant analysis (OPLS-DA) demonstrated significant differences among 50 volatile compounds identified from the four cat foods. Using variable importance in projection (VIP) values, we selected 17 key flavor compounds responsible for distinguishing between the four cat foods. Peptides with a molecular mass <180 Da showed correlation with nonanoic acid and cedrol, while those >3000 Da correlated with hexanoic acid ethyl ester. Regression coefficients (RCs) calculated from partial least-squares regression (PLSR) results showed positive correlations between compound content and palatability for six compounds, whereas negative correlations were observed for ten compounds. Validation experiments confirmed that nonanal, 2-propylpyridine, and 3-octen-2-one enhanced palatability and correlated with peptides ranging from 180 to 500 Da; conversely, nonanoic acid ethyl ester and 3-methyl-pentanoic acid reduced palatability and correlated with peptides ranging from 1000 to 3000 Da.
In this experiment, Guangxi passion fruit was used as the raw material for natural aroma extraction using the spinning cone column (Spinning Cone Column, SCC) technique. In combination with the semi-quantitative method, the aroma characteristics of the raw pulp (raw whole-fruit puree, PU) before SCC processing, residue (Residue, RS) and extract (Extract, EX) after SCC processing, and passion fruit juice (Juice, JU) were evaluated for their aroma characteristics using headspace gas chromatography-mass spectrometry (HS-SPME-GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), electronic nose, and sensory evaluation. As a result, a total of 110 aroma substances were detected in four samples, and 33, 38, 73, and 28 aroma components were detected from PU, RS, EX, and JU, respectively. There are 50 compounds in EX with concentrations greater than 10 μg/kg, and 19 of them had OAV values greater than 1, including β-Ionone and linalool, which contributed significantly to the aroma. The aroma profiles and characteristics were further analyzed for JU and EX using the e-nose sensor, and it was found that both showed similar aroma profiles. The sensory evaluation results were also in general agreement with the results obtained from the electronic nose, with EX having mainly "floral", "fruity," and "sweet" aromas. The results demonstrated that the spinning cone column technique can increase the fresh and natural fruity aroma of passion fruit in the extract, which has the effect of enriching the aroma and improving the aftertaste. This study will make a foundation for passion fruit SCC extract application in drinks. Practical applications Compared with traditional extraction technology, spinning cone column technology has the advantages of high mass transfer efficiency, short extraction time, a wide range of temperature control, and the most complete extracted flavor substances, which greatly reduces the damage degree of heat-sensitive flavor substances and condense aroma. It is widely used in beverages, wine, dairy products, fruit and vegetable, spice essential oil, and other industries. Passion fruit flavor prepared by SCC technology has the advantages of high purity and high concentration, which can be used in solid drinks, baked food, convenience food, tobacco, perfume, and other products. Besides, GC-IMS is an efficient and rapid new analytical technique, which has been widely used in the flavor analysis of volatile organic compounds in food and traditional Chinese medicine samples.
The effect on the product structure and volatile compounds of fermented chicken liver (FCL) by Lactobacillus plantarum LP1 (L. plantarum LP1) was investigated in this study. The results of ultraviolet, fluorescence and diffraction of x-rays spectra showed that the fermentation accelerated the degradation of the chicken liver (CL) protein, with a large number of small molecule peptides. The thermal stability of FCL was significantly higher than that of CL. The total relative contents of free and essential amino acids in FCL were significantly increased compared by that of CL. Meanwhile, FCL had higher amino acid nitrogen and acidity. Moreover, the types and relative contents of volatile compounds, such as aldehydes, acids, hydrocarbons, were increased by 40.04%, 21.34% and 2.18% in FCL over those in FC, respectively. Therefore, the fermentation of chicken liver provides scientific basis for the comprehensive utilization of by-products in chicken.
Chinese steamed bread (CSB) made with commercial yeasts and traditional Chinese sourdoughs was analyzed for the flavor and microbial communities. Sensory attributes were assessed using quantitative descriptive analysis (QDA). Results showed that commercial yeast CSB-1 (JMMT1), a yeast-based sample, had stronger milky and sweet attributes, while commercial yeast CSB-2 (JMMT2) had more pronounced yeasty attributes. Among the sourdough-based samples, Shandong traditional sourdough steamed bread (SDMT) exhibited a winelike character with a weak sweet aftertaste, whereas Shanxi traditional sourdough steamed bread (SXMT) had a distinct sour attribute and a less prominent floury taste. SAFE-GC-O-MS analysis identified 40 aroma compounds with FD values ≥2, including 33 key aroma compounds with an OAV of ≥1. Compounds such as 2,3-butanediol, decanal, methyl isobutenyl ketone, gamma-nonanolactone, ethyl caprate, 2-ethylhexyl acetate, vanillin, and indole contributed significantly to the diverse aroma profiles. High-throughput sequencing revealed dominant strains: Bacillus in JMMT1, Lactobacillus in JMMT2, Bacillus in SDMT, and Lactobacillus in SXMT. Over two-thirds of the aroma compounds showed correlations with microorganisms. Notably, Acetobacter exhibited a highly significant correlation with butanoic acid, while Lactobacillus played a significant role in the formation of ester flavors. These findings contribute to the flavor evaluation and microbial community analysis of steamed bread made with different leavening agents, providing valuable insights into their relationship.
Chinese citrus Pu-erh tea is recognized for its unique flavor, which is composed of key aroma-active compounds and affected by taste-impact metabolites. In this study, the whole citrus Pu-erh tea (CP), its out-layer fruit (OF) container and inside tea (IT) powder, were analyzed by solvent-assisted flavor evaporation (SAFE) coupled with GC-MS-O and UHPLC-MS/MS. As the result, 47 important volatiles were identified, including 27 (IT), 30 (OF) and 27 (CP) volatiles that were screened out based on their OAV (odor activity value) and ACI (aroma character impact value), and further validated by aroma omission/recombination experiment. Combined with the sensory evaluation and PLSR model, the aroma profile of CP was characterized with the following ten flavor attributes: sweet (vanillin); floral (β-ionone); fruity (methyl anthranilate, methyl methanthranilate, citronellal); roasted (thymol); musty (p-cymene), woody (perillaldehyde); herbal (linalool, α-terpineol); phenolic (2,4-di-tert-butylphenol, p-cresol); minty (dihydrocarvone); and fatty (octanoic acid) volatiles. As for the non-volatile taste-impact chemicals, the most prominent metabolites were identified as flavonoids that mainly contributed to the taste of bitter (catechin, epicatechin, gallocatechin), astringency (leucopelargonidin) and sweet (neohesperidin). This novel finding has provided an insight and better understanding of the aroma profile of citrus Pu-erh tea and some guidance for flavor pairing and taste improvement.
The effect on the physicochemical properties, structure and flavoring substances of fermented chicken liver (FCL) by Lactobacillus plantarum LP1 was investigated in this study. The results of ultraviolet, fluorescence and diffraction of x-rays spectra showed that the fermentation accelerated the degradation of the chicken liver (CL) protein, with a large number of small molecule peptides. The thermal stability of FCL was significantly higher than that of CL. The total relative contents of free and essential amino acids in FCL significantly increased compared by that of CL. At the same time, FCL had higher amino acid nitrogen and acidity. Moreover, the types and relative contents of volatile flavor substances, such as aldehydes, acids, hydrocarbons, were increased by 40.04%, 21.34% and 2.18% in FCL, which could be used to improve the CL flavor. Therefore, the fermentation of chicken liver is the basis for high value utilization of chicken by-products.
Abstract Chinese Citrus Pu-erh tea is recognized for its unique flavor, which is composed of key aroma-active compounds and affected by taste-impact metabolites. In this study, the whole citrus Pu-erh tea (CP), its out-layer fruit (OF) container and inside tea (IT) powder, were analyzed by solvent-assisted flavor evaporation (SAFE) coupled with GC-MS-O and UHPLC-MS/MS. As the result, 47 important volatiles were identified, including 27 (IT), 30 (OF) and 27 (CP) volatiles that were screened out based on their OAV (odor activity value) and ACI (aroma character impact value), and further validated by aroma omission/recombination experiment. Combined with the sensory evaluation and PLSR model, the aroma profile of CP was characterized with the following ten flavor attributes: sweet (vanillin); floral (β-ionone); fruity (methyl anthranilate, methyl methanthranilate, citronellal); roasted (thymol); musty (p-cymene), woody (perillaldehyde); herbal (linalool, α-terpineol); phenolic (2,4-di-tert-butylphenol, p-cresol); minty (dihydrocarvone); and fatty (octanoic acid) volatiles. As for the non-volatile taste-impact chemicals, the most prominent metabolites were identified as flavonoids that mainly contributed to the taste of bitter (catechin, epicatechin, gallocatechin), astringency (leucopelargonidin) and sweet (neohesperidin). This novel finding has provided an insight and better understanding of the flavor profile of Citrus Pu-erh tea and some guidance for flavor pairing and taste improvement.