Aims and background To calculate peripheral radiation dose to the second primary site in patients who have developed a second malignancy after breast cancer radiotherapy (index cases) and to compare it with dose in the analogous anatomical site in radiotherapy-treated breast cancer patients who did not experience a second malignancy (controls). To evaluate the feasibility of Peridose-software peripheral dose calculation in retrospective case-control studies. Material and study design A case-control study on 12,630 patients who underwent adjuvant breast radiotherapy was performed. Minimum 5-year follow-up was required. Each index case was matched with 5 controls by 1) year of birth, 2) year of radiotherapy and 3) follow-up duration. Peridose-software was used to calculate peripheral dose. Results 195 second cancers were registered (0.019% of all patients treated with adjuvant irradiation). Several methodological limitations of the Peridose calculation were encountered including impossibility to calculate the peripheral dose in the patients treated with intraoperative or external electron beam radiotherapy, in case of second tumors located at <15 cm from the radiotherapy field etc. Moreover, Peridose requires full radiotherapy data and the distance between radiotherapy field and second primary site. Due to these intrinsic limitations, only 6 index cases were eligible for dose calculation. Calculated doses at the second cancer site in index cases and in an analogous site in controls ranged between 7.5 and 145 cGy. The mean index-control dose difference was −3.15 cGy (range, −15.8 cGy and +2.7 cGy). Conclusions The calculated peripheral doses were low and the index-control differences were small. However, the small number of eligible patients precludes a reliable analysis of a potential dose-response relationship. Large patient series followed for a long period and further improvement in the methodology of the peripheral dose calculation are necessary in order to overcome the methodological challenges of the study.
Breast-conserving surgery (BCS) and whole breast radiation therapy (WBRT) are the standard of care for early-stage breast cancer (BC). Based on the observation that most local recurrences occurred near the tumor bed, accelerated partial breast irradiation (APBI), consisting of a higher dose per fraction to the tumor bed over a reduced treatment time, has been gaining ground as an attractive alternative in selected patients with low-risk BC. Although more widely delivered in postoperative setting, preoperative APBI has also been investigated in a limited, though increasing, and number of studies. The aim of this study is to test the feasibility, safety and efficacy of preoperative radiotherapy (RT) in a single fraction for selected BC patients.This is a phase I/II, single-arm and open-label single-center clinical trial using CyberKnife. The clinical investigation is supported by a preplanning section which addresses technical and dosimetric issues. The primary endpoint for the phase I study, covering the 1st and 2nd year of the research project, is the identification of the maximum tolerated dose (MTD) which meets a specific target toxicity level (no grade 3-4 toxicity). The primary endpoint for the phase II study (3rd to 5th year) is the evaluation of treatment efficacy measured in terms of pathological complete response rate.The study will investigate the response of BC to the preoperative APBI from different perspectives. While preoperative APBI represents a form of anticipated boost, followed by WBRT, different are the implications for the scientific community. The study may help to identify good responders for whom surgery could be omitted. It is especially appealing for patients unfit for surgery due to advanced age or severe co-morbidities, in addition to or instead of systemic therapies, to ensure long-term local control. Moreover, patients with oligometastatic disease synchronous with primary BC may benefit from APBI on the intact tumor in terms of tumor progression free survival. The study of response to RT can provide useful information about BC radiobiology, immunologic reactions, genomic expression, and radiomics features, to be tested on a larger scale.The study was prospectively registered at clinicaltrials.gov ( NCT04679454 ).
Introduction Of the different treatments for early prostate cancer, hypofractionated external-beam radiotherapy is one of the most interesting and studied options. Methods The main objective of this phase II clinical study is to evaluate the feasibility, in terms of the incidence of acute side effects, of a new ultra-hypofractionated scheme for low- or intermediate-risk prostate cancer patients treated with the latest imaging and radiotherapy technology, allowing dose escalation to the dominant intraprostatic lesion identified by multiparametric magnetic resonance imaging. Secondary endpoints of the study are the evaluation of the long-term tolerability of the treatment in terms of late side effects, quality of life, and efficacy (oncological outcome). Results The study is ongoing, and we expect to complete recruitment by the end of 2016. Conclusions Like in previous studies, we expect ultra-hypofractionated radiation treatment for prostate cancer to be well tolerated and effective. Trial registration ClinicalTrials.gov identifier: NCT01913717.