The Front Cover demonstrates a room-temperature lithium metal battery enabled by all-solid-state organic polymer electrolytes with crosslinked short-brush architecture, and the future world powered by next-generation high-energy solid-state batteries. More information can be found in the Research Article by X. Ji, X. Zhou, Z.-H. Guo and co-workers.
Abstract The random copolymerization of norbornene‐functionalized macromonomers was explored as a method of synthesizing mixed‐graft block copolymers (mGBCPs). The copolymerization kinetics of a model system of polystyrene (PS) and poly(lactic acid) (PLA) macromonomers was first analyzed, revealing a gradient composition of side chains along the mGBCP backbone. The phase separation behavior of mGBCPs with PS and PLA side chains of various backbone lengths and side chain molar ratios was investigated, and increasing the backbone length was found to stabilize the phase‐separated nanostructures. The graft architecture was also demonstrated to improve the processability of the mGBCP, compared to a linear counterpart. Investigations of mGBCPs comprised of polydimethylsiloxane and poly(ethylene oxide) side chains exemplified the diverse self‐assembled morphologies, including a Frank‐Kasper A15 phase, that can be obtained with mGBCPs synthesized by random copolymerization of macromonomers. Lastly, a ternary mGBCP was synthesized by the copolymerization of three macromonomers.
Abstract Multicomponent nanostructured materials assembled from molecular building blocks received wide attention due to their precisely integrated multifunctionalities. However, discovery of these materials with desirable composition and morphology was limited by their low synthetic scalability and narrow structural tuning window with given building blocks. Here, we report a scalable and diversity‐oriented synthetic approach to hierarchically structured nanomaterials based on a few readily accessible building blocks. Mixed‐graft block copolymers containing sequence‐defined side chains were prepared through ring‐opening metathesis copolymerization of three or four types of macromonomers. Intramolecularly defined interfaces promoted the formation of ordered hierarchical structures with lattice sizes tunable across multiple length scales. The same set of macromonomers were arranged and combined in different ways, providing access to diverse morphologies in the resultant structures.
Analog systems may allow image processing, such as edge detection, with low computational power. However, most demonstrated analog systems, based on either conventional 4-f imaging systems or nanophotonic structures, rely on coherent laser sources for illumination, which significantly restricts their use in routine imaging tasks with ambient, incoherent illumination. Here, we demonstrated a metalens-assisted imaging system that can allow optoelectronic edge detection under ambient illumination conditions. The metalens was designed to generate polarization-dependent optical transfer functions (OTFs), resulting in a synthetic OTF with an isotropic high-pass frequency response after digital subtraction. We integrated the polarization-multiplexed metalens with a polarization camera and experimentally demonstrated single-shot edge detection of indoor and outdoor scenes, including a flying airplane, under ambient sunlight illumination. The proposed system showcased the potential of using polarization multiplexing for the construction of complex optical convolution kernels toward accelerated machine vision tasks such as object detection and classification under ambient illumination.
We have performed dissipative particle dynamics simulations to study the self-assembly of ABC-type bottlebrush copolymers (BBCPs), one portion of whose backbone is grafted by pairs of A-blocks and the other portion is grafted by B/C-blocks in pairs, focusing on the effects of the number of A side chains, the length of B side chains relative to that of C side chains, and the rigidity of the backbone on the formation of hierarchical structures. A number of hierarchical structures with the superstructures formed by the phase separation between A and B/C-blocks and the substructures formed by the phase separation between B and C-blocks are observed. Some hierarchical structures are similar to those self-assembled by ABC star copolymers, whereas their stable parameter regions of ABC-type BBCPs are much larger. On the other hand, the ABC-type BBCPs can also form some novel hierarchical structures that are hard to form in ABC star copolymers. Though the formation of the A-superstructure and the B-substructure in many hierarchical structures can be independently controlled, there are also some hierarchical structures in which the transitions of the superstructure and substructures are coupled. In other words, the A-superstructure changes along with the transformation of the B-substructure for fixed fA. In addition, our results demonstrate that the rigidity of the backbone has a significant effect on the formation of the hierarchical structure in ABC-type BBCPs, i.e., a rigid backbone favors the normal arrangement of B-substructures to A-superstructures. Our work not only deepens the understanding of the self-assembly mechanism of ABC-type BBCPs but also provides helpful guidance for experiments to fabricate interesting hierarchical structures.
Polyvinyl alcohol (PVA) gel has a very wide range of applications in agriculture, military, industry, and other fields. As a widely used water-soluble polymer, PVA has good mechanical properties, excellent spinnability, good hydrophilicity, remarkable physical and chemical stability, good film formation, is non-polluting, and exhibits good natural degradation and biocompatibility. It is an ideal gel preparation material. Incorporation of rare-earth elements into PVA polymers can be used to prepare rare-earth luminescent gel materials. Results show that the luminescent efficiency of complexes is mainly related to their structure, ligand substituents, synergists, and the electronic configuration of doped rare-earth ions. Fluorescent gel films were prepared by adding europium, terbium, and europium/terbium co-doped into PVA, and their fluorescence properties were compared and analyzed. It was found that, in addition to the above factors, the sensitization of terbium to europium, and the fluorescence-quenching effect of hydroxyl groups, will influence the fluorescence properties. This has opened a new route for the application of rare-earth materials and may have value in the field of new materials.
Abstract Multicomponent nanostructured materials assembled from molecular building blocks received wide attention due to their precisely integrated multifunctionalities. However, discovery of these materials with desirable composition and morphology was limited by their low synthetic scalability and narrow structural tuning window with given building blocks. Here, we report a scalable and diversity‐oriented synthetic approach to hierarchically structured nanomaterials based on a few readily accessible building blocks. Mixed‐graft block copolymers containing sequence‐defined side chains were prepared through ring‐opening metathesis copolymerization of three or four types of macromonomers. Intramolecularly defined interfaces promoted the formation of ordered hierarchical structures with lattice sizes tunable across multiple length scales. The same set of macromonomers were arranged and combined in different ways, providing access to diverse morphologies in the resultant structures.
Block copolymer self-assembly is a powerful tool for 2D nanofabrication; however, its extension to complex 3D network structures, which would be useful for a range of applications, is limited. Here, we report a simple method to generate unprecedented 3D mesh morphologies through intrinsic molecular confinement self-assembly. We designed triblock bottlebrush polymers with two Janus domains: one perpendicular and one parallel to the polymer backbone. The former enforces a lamellar superstructure that intrinsically confines the intra-layer self-assembly of the latter, giving rise to a mesh-like monoclinic M15 network substructure with excellent long-range order. Dissipative particle dynamics simulations show that the spatial constraints exerted on the polymer backbone drive the emergence of M15, as well as a tetragonal T131 in the strong segregation regime. This work demonstrates intrinsic molecular confinement as a path to bottom-up assembly of new geometrical phases of soft matter, extending the capabilities of block copolymer nanofabrication.