Combined BRAF and MEK inhibition is a standard of care in patients with advanced BRAF-mutant melanoma, but acquired resistance remains a challenge that limits response durability. Here, we quantitated in vivo ERK1/2 activity and tumor response associated with resistance to combined BRAF and MEK inhibition in mutant BRAF xenografts. We found that ERK1/2 pathway reactivation preceded the growth of resistant tumors. Moreover, we detected a subset of cells that not only persisted throughout long-term treatment but restored ERK1/2 signaling and grew upon drug removal. Cell lines derived from combination-resistant tumors (CRT) exhibited elevated ERK1/2 phosphorylation, which were sensitive to ERK1/2 inhibition. In some CRTs, we detected a tandem duplication of the BRAF kinase domain. Monitoring ERK1/2 activity in vivo was efficacious in predicting tumor response during intermittent treatment. We observed maintained expression of the mitotic regulator, polo-like kinase 1 (Plk1), in melanoma resistant to BRAF and MEK inhibitors. Plk1 inhibition induced apoptosis in CRTs, leading to slowed growth of BRAF and MEK inhibitor-resistant tumors in vivo These data demonstrate the utility of in vivo ERK1/2 pathway reporting as a tool to optimize clinical dosing schemes and establish suppression of Plk1 as potential salvage therapy for BRAF inhibitor and MEK inhibitor-resistant melanoma.
Abstract Metastatic cancer remains a clinical challenge; however, patients diagnosed prior to metastatic dissemination have a good prognosis. The transcription factor, TWIST1 has been implicated in enhancing the migration and invasion steps within the metastatic cascade, but the range of TWIST1-regulated targets is poorly described. In this study, we performed expression profiling to identify the TWIST1-regulated transcriptome of melanoma cells. Gene ontology pathway analysis revealed that TWIST1 and epithelial to mesenchymal transition (EMT) were inversely correlated with levels of cell adhesion molecule 1 (CADM1). Chromatin immunoprecipitation (ChIP) studies and promoter assays demonstrated that TWIST1 physically interacts with the CADM1 promoter, suggesting TWIST1 directly represses CADM1 levels. Increased expression of CADM1 resulted in significant inhibition of motility and invasiveness of melanoma cells. In addition, elevated CADM1 elicited caspase-independent cell death in non-adherent conditions. Expression array analysis suggests that CADM1 directed non-adherent cell death is associated with loss of mitochondrial membrane potential and subsequent failure of oxidative phosphorylation pathways. Importantly, tissue microarray analysis and clinical data from TCGA indicate that CADM1 expression is inversely associated with melanoma progression and positively correlated with better overall survival in patients. Together, these data suggest that CADM1 exerts tumor suppressive functions in melanoma by reducing invasive potential and may be considered a biomarker for favorable prognosis.
Combinations of BRAF inhibitors and MEK inhibitors (BRAFi + MEKi) are FDA-approved to treat BRAFV600E/K-mutant melanoma. Efficacy of BRAFi + MEKi associates with cancer cell death and alterations in the tumor immune microenvironment; however, the links are poorly understood. We show that BRAFi + MEKi caused durable melanoma regression in an immune-mediated manner. BRAFi + MEKi treatment promoted cleavage of gasdermin E (GSDME) and release of HMGB1, markers of pyroptotic cell death. GSDME-deficient melanoma showed defective HMGB1 release, reduced tumor-associated T cell and activated dendritic cell infiltrates in response to BRAFi + MEKi, and more frequent tumor regrowth after drug removal. Importantly, BRAFi + MEKi-resistant disease lacked pyroptosis markers and showed decreased intratumoral T-cell infiltration but was sensitive to pyroptosis-inducing chemotherapy. These data implicate BRAFi + MEKi-induced pyroptosis in antitumor immune responses and highlight new therapeutic strategies for resistant melanoma. SIGNIFICANCE: Targeted inhibitors and immune checkpoint agents have advanced the care of patients with melanoma; however, detailed knowledge of the intersection between these two research areas is lacking. We describe a molecular mechanism of targeted inhibitor regulation of an immune-stimulatory form of cell death and provide a proof-of-principle salvage therapy concept for inhibitor-resistant melanoma.See related commentary by Smalley, p. 176.This article is highlighted in the In This Issue feature, p. 161.
Innate Immunity
The location and interaction of innate immune cells in lymph nodes contribute to the induction of T cell responses, yet the exact cells that contribute are unclear. Using advanced imaging techniques to characterize the spatial arrangement of innate and adaptive immune cells during Toll-like receptor agonist–induced inflammation, Leal et al. show that lymph node–resident dendritic cells (DCs) and inflammatory monocytes cooperate to induce T cell responses. These DCs migrate to the T cell zone and present antigen to T cells. Circulating monocytes enter the lymph nodes through high endothelial venules and become spatially polarized in the T cell zone, consequently inducing distinct inflammatory microenvironments and effector T cell subsets. Thus, DCs and monocytes in the lymph node T cell zone work together to induce T cell responses.
Sci. Immunol. 6 , eabb9435 (2021).
Abstract Concurrent MEK and CDK4/6 inhibition shows promise in clinical trials for patients with advanced-stage mutant BRAF/NRAS solid tumors. The effects of CDK4/6 inhibitor (CDK4/6i) in combination with BRAF/MEK-targeting agents on the tumor immune microenvironment are unclear, especially in melanoma, for which immune checkpoint inhibitors are effective in approximately 50% of patients. Here, we show that patients progressing on CDK4/6i/MEK pathway inhibitor combinations exhibit T-cell exclusion. We found that MEK and CDK4/6 targeting was more effective at delaying regrowth of mutant BRAF melanoma in immunocompetent versus immune-deficient mice. Although MEK inhibitor (MEKi) treatment increased tumor immunogenicity and intratumoral recruitment of CD8+ T cells, the main effect of CDK4/6i alone and in combination with MEKi was increased expression of CD137L, a T-cell costimulatory molecule on immune cells. Depletion of CD8+ T cells or blockade of the CD137 ligand–receptor interaction reduced time to regrowth of melanomas in the context of treatment with CDK4/6i plus MEKi treatment in vivo. Together, our data outline an antitumor immune-based mechanism and show the efficacy of targeting both the MEK pathway and CDK4/6.
Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME might be regulated. Like GSDME-N, inflammasome-generated gasdermin D-N (GSDMD-N), can also permeabilize the mitochondria linking inflammasome activation to downstream activation of the apoptosome. Collectively, our results point to a role of gasdermin proteins in targeting the mitochondria to promote cytochrome c release to augment the mitochondrial apoptotic pathway.
Abstract Metastatic melanoma is the deadliest form of skin cancer; however, patients diagnosed and treated prior to metastatic dissemination have a good prognosis. The transcription factor, TWIST1 has been implicated in enhancing the migration and invasion of melanoma cells but the range of TWIST1-regulated targets is poorly described. In this study, we performed expression profiling to identify the TWIST1-regulated transcriptome. Gene ontology pathway analysis revealed that TWIST1 and epithelial to mesenchymal transition (EMT) were inversely correlated with levels of cell adhesion molecule 1 (CADM1). Chromatin immunoprecipitation (ChIP) studies and promoter assays demonstrated that TWIST1 physically interacts with the CADM1 promoter, suggesting TWIST1 directly represses CADM1 levels. Modulation of CADM1 resulted in significant effects on the migration and invasion of melanoma cells. In addition, elevated CADM1 elicited cell death in non-adherent conditions, an effect that could not be rescued with a pan-caspase inhibitor. Analyses suggest that CADM1 directed non-adherent cell death is associated with loss of mitochondrial membrane potential and subsequent failure of oxidative phosphorylation pathways. Furthermore, clinical data from TCGA indicates that CADM1 expression is correlated with better overall survival in patients. Together, these data suggest that CADM1 exerts tumor suppressive functions in melanoma by reducing invasive potential and may be a biomarker for improved survival of melanoma patients. Citation Format: Edward J. Hartsough, Michele B. Weiss, Shea A. Heilman, Timothy J. Purwin, Curtis H. Kugel, Sheera R. Rosenbaum, Dan A. Erkes, Manoela Tiago, Inna Chervoneva, Andrew E. Aplin. CADM1 is a TWIST1-regulated suppressor of melanoma invasion and survival [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 105.
Immunotherapy
RAS oncogene mutations are common in various cancers, controlling their growth and survival. Targeting mutant RAS proteins with antibodies has been unsuccessful because of low surface expression, even when targeting mutant RAS peptides presented by human leukocyte antigen (HLA) on the surface of cancer cells. Douglass et al. used phage display to generate single-chain variable fragments (scFvs) specific for mutant RAS peptide-HLA complexes. The authors tested various bispecific, T cell–engaging antibody formulations, finding that single-chain diabodies (scDbs) combining the aforementioned scFv with an anti-CD3 scFv were able to induce T cell activation and subsequent killing of tumor cells expressing mutant RAS peptide-HLA complexes. This scDb approach opens the door for antibody-based therapies against mutant neoantigens expressed at very low levels on the surface of cancer cells.
Sci. Immunol. 6 , eabd5515 (2021).