In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.
Background and purpose. Venomous animals express numerous Kunitz-type peptides. The mambaquaretin-1 (MQ1) recently identified from the Dendroaspis angusticeps venom is the most selective antagonist of the arginine-vasopressin V2 receptor (V2R) and the unique Kunitz-type peptide active on a GPCR. We aimed to exploit other mamba venoms to enlarge the V2R-Kunitz peptide family and get insight into the MQ1 molecular mode of action. Experimental approach. We used a bio-guided screening assay to identify novel MQs and placed them phylogenetically. Several newly identified MQs were produced by solid phase peptide synthesis. They were characterized in vitro by binding and functional tests andin vivo by diuresis measurement in rats. Key results. Eight additional MQs were identified with nanomolar affinities for the V2R, all antagonists. MQs form a new subgroup in the Kunitz family, close to the V2R non-active dendrotoxins and to 2 V2R active cobra toxins. Sequence comparison between active and non-active V2R Kunitz peptides highlighted 5 specific V2R positions. Four of them are involved in V2R activity and belong to the 2 large MQ1 loops. We finally determined that 8 positions, part of these 2 loops, interact with the V2R. The variant MQ1-K39A showed specificity for the human versus the rat V2R . Conclusions and implications. A third function and mode of action is now associated with the Kunitz-peptides. The number of MQ1 residues involved in V2R binding is large and may explain its absolute selectivity. MQ1-K39A represents the first step in the improvement of the MQ1 design for medicinal perspective.
Background and Purpose Venomous animals express numerous Kunitz‐type peptides. The mambaquaretin‐1 (MQ1) peptide identified from the Dendroaspis angusticeps venom is the most selective antagonist of the arginine‐vasopressin V2 receptor (V2R) and the only unique Kunitz‐type peptide active on a GPCR. We aimed to exploit other mamba venoms to enlarge the V2R‐Kunitz peptide family and gain insight into the MQ1 molecular mode of action. Experimental Approach We used a bio‐guided screening assay to identify novel MQs and placed them phylogenetically. MQs were produced by solid‐phase peptide synthesis and characterized in vitro by binding and functional tests and in vivo by diuresis measurement in rats. Key Results Eight additional MQs were identified with nanomolar affinities for the V2R, all antagonists. MQs form a new subgroup in the Kunitz family, close to the V2R non‐active dendrotoxins and to two V2R‐active cobra toxins. Sequence comparison between active and non‐active V2R Kunitz peptides highlighted five positions, among which four are involved in V2R interaction and belong to the two large MQ1 loops. We finally determined that eight positions, part of these two loops, interact with the V2R. The variant MQ1‐K39A showed a higher affinity for the hV2R, but not for the rat V2R. Conclusions and Implications A new function and mode of action is associated with the Kunitz peptides. The number of MQ1 residues involved in V2R binding is large and may explain its absolute selectivity. MQ1‐K39A represents the first step in the improvement of the MQ1 design from a medicinal perspective.
The accurate quantification of biomarkers is paramount in modern medicine, particularly in cancer where precise diagnosis is imperative for targeted therapy selection. In this paper we described a multiplexed analysis diagnostic approach based on cleavable MS-tagged antibodies. The technology uses MS-tag isotopologues and the sydnonimine-cyclooctyne click-and-release bioorthogonal reaction. In a proof of concept study, we demonstrated the potential of this approach for cancer cell immunoprofiling in culture cells, tissues and
Background: Vaptans were developed at the end of the previous century as V2R antagonists. Tolvaptan is the most prescribed vaptan for hyponatremia and the autosomal polycystic kidney disease (ADPKD). However, its use is not as widespread as it should be due to price issues, a narrow therapeutic window and some side effects. With the aim of discovering new efficient and safer V2R antagonists, we screened animal venoms and identified several interesting peptide toxins. Among them, MQ1 displayed such unique biological properties in that regard that it was the starting point for the development of a potential drug candidate. Methods: Human T-cell assays and bioinformatics was used to mitigate MQ1 immunogenicity risk. The MQ232 biodistribution in mice was done by positron emission tomography (PET). Pharmacodynamics, pharmacokinetics, acute and chronic toxicity tests were performed on control rats. A rat experimental model of dDAVP-induced hyponatremia, an ex vivo mice model of renal cysts and a mice orthologous model of ADPKD were used to validate MQ232 efficacy in these pathologies. Results: Three mutations were introduced in MQ1 to mitigate its immunogenicity risk. A fourth gain-of-function mutation was added to generate MQ232. MQ232’s safety was demonstrated by a first toxic dose as high as 3,000 nmol/kg and a strong kidney organ selectivity by PET imaging, while showing almost no interaction with the liver. MQ232’s efficacy was first demonstrated with an effective dose of 3 nmol/kg in a hyponatremic model, and then in polycystic kidney models on which MQ232 significantly reduced cyst growth. Conclusions: We demonstrated, employing diverse translational techniques and minimizing animal use, MQ232's safety and efficacy in several rodent models of hyponatremia and ADPKD.
Research on graphene-based nanomaterials has experienced exponential growth in the last few decades, driven by their unique properties and their future potential impact on our everyday life. With the increasing production and commercialization of these materials, there is significant interest in understanding their fate in vivo. Herein, we investigated the distribution of 14C-few-layer graphene (14C-FLG) flakes (lat. dim. ∼ 500 nm) in mice over a period of one year. Furthermore, we compared the effects of repeated low-dose and acute high-dose exposure by tracheal administration. The results showed that most of the radioactivity was found in the lungs in both cases, with longer elimination times in the case of acute high-dose administration. In order to gain deeper insights into the distribution pattern, we conducted ex vivo investigations using μ-autoradiography on tissue sections, revealing the heterogeneous distribution of the material following administration. For the first time, μ-autoradiography was used to conduct a comprehensive investigation into the distribution and potential presence of FLG within lung cells isolated from the exposed lungs. The presence of radioactivity in lung cells strongly suggests internalization of the 14C-FLG particles. Overall these results show the long-term accumulation of the material in the lungs over one year, regardless of the administration protocol, and the higher biopersistence of FLG in the case of an acute exposure. These findings highlight the importance of the exposure scenario in the context of intratracheal administration, which is of interest in the evaluation of the potential health risks of graphene-based nanomaterials.
Massive proliferation of some toxic marine dinoflagellates is responsible for the occurrence of harmful algal blooms and the contamination of fish and shellfish worldwide. Pinnatoxins (PnTx) (A-H) comprise an emerging phycotoxin family belonging to the cyclic imine toxin group. Interest has been focused on these lipophilic, fast-acting and highly potent toxins because they are widely found in contaminated shellfish, and can represent a risk for seafood consumers. PnTx display a potent antagonist effect on nicotinic acetylcholine receptors (nAChR), and in this study we assessed in vivo the ability of PnTx-G to cross physiological barriers to reach its molecular target. Radiolabeled [3H]-PnTx-G synthesized with good radiochemical purity and yield retained the high affinity of the natural toxin. Oral gavage or intravenous administration to adult rats and digital autoradiographic analyses revealed the biodistribution and toxicokinetics of [3H]-PnTx-G, which is rapidly cleared from blood, and accumulates in the liver and small intestine. The labeling of peripheral and brain adult/embryo rat tissues highlights its ability to cross the intestinal, blood-brain and placental barriers. High-resolution 3D-imaging and in vitro competition studies on rat embryo sections revealed the specificity of [3H]-PnTx-G binding and its selectivity for muscle and neuronal nAChR subtypes (such as α7 subtype). The use of a human perfused cotyledon model and mass spectrometry analyses disclosed that PnTx-G crosses the human placental barrier. The increasing worldwide occurrence of both the dinoflagellate Vulcanodinium rugosum and PnTx-contaminated shellfish, due to climate warming, raises concerns about the potential adverse impact that exposure to pinnatoxins may have for human health.