We have obtained low-temperature magnetic circular dichroism (MCD) spectra for ferric cyano complexes of the wild type and E546N mutant of a human inducible nitric oxide synthase (iNOS) oxygenase/flavin mononucleotide (oxyFMN) construct. The mutation at the FMN domain has previously been shown to modulate the MCD spectra of the l-arginine-bound ferric iNOS heme (Sempombe, J.; et al. J. Am. Chem. Soc.2009, 131, 6940–6941). The addition of l-arginine to the wild-type protein causes notable changes in the CN–-adduct MCD spectrum, while the E546N mutant spectrum is not perturbed. Moreover, the MCD spectral perturbation observed with l-arginine is absent in the CN– complexes incubated with N-hydroxy-l-arginine, which is the substrate for the second step of NOS catalysis. These results indicate that interdomain FMN–heme interactions exert a long-range effect on key heme axial ligand–substrate interactions that determine substrate oxidation pathways of NOS.
The room temperature absorption and emission spectra of the 4-cis and all-trans isomers of 2,4,6,8,10,12,14-hexadecaheptaene are almost identical, exhibiting the characteristic dual emissions S1→S0 (21Ag- → 11Ag-) and S2→S0 (11Bu+ → 11Ag-) noted in previous studies of intermediate length polyenes and carotenoids. The ratio of the S1→S0 and S2→S0 emission yields for the cis isomer increases by a factor of ∼15 upon cooling to 77 K in n-pentadecane. In contrast, for the trans isomer this ratio shows a 2-fold decrease with decreasing temperature. These results suggest a low barrier for conversion between the 4-cis and all-trans isomers in the S1 state. At 77 K, the cis isomer cannot convert to the more stable all-trans isomer in the 21Ag- state, resulting in the striking increase in its S1→S0 fluorescence. These experiments imply that the S1 states of longer polyenes have local energy minima, corresponding to a range of conformations and isomers, separated by relatively low (2−4 kcal) barriers. Steady state and time-resolved optical measurements on the S1 states in solution thus may sample a distribution of conformers and geometric isomers, even for samples represented by a single, dominant ground state structure. Complex S1 potential energy surfaces may help explain the complicated S2→S1 relaxation kinetics of many carotenoids. The finding that fluorescence from linear polyenes is so strongly dependent on molecular symmetry requires a reevaluation of the literature on the radiative properties of all-trans polyenes and carotenoids.
The mechanism of hydrogen production in [FeFe] hydrogenase remains elusive. However, a species featuring a terminal hydride bound to the distal Fe is thought to be the key intermediate leading to hydrogen production. In this study, density functional theory (DFT) calculations on the terminal (H-term) and bridging (μ-H) hydride isomers of (μ-edt)-[Fe(2)(PMe(3))(4)(CO)(2)H](+) are presented in order to understand the factors affecting their propensity for protonation. Relative to H-term, μ-H is 12.7 kcal/mol more stable, which contributes to its decreased reactivity towards an acid. Potential energy surface (PES) calculations for the reaction of the H-term isomer with 4-nitropyridinium, a proton source, further reveal a lower activation energy barrier (14.5 kcal/mol) for H-term than for μ-H (29 kcal/mol). Besides these energetic considerations, the H-term isomer displays a key molecular orbital (MO <139>) that has a relatively strong hydride (1s) contribution (23%), which is not present in the μ-H isomer. This indicates a potential orbital control of the reaction of the hydride complexes with acid. The lower activation energy barrier and this key MO together control the overall catalytic activity of (μ-edt)[Fe(2)(PMe(3))(4)(CO)(2)(H-term)](+). Lastly, Raman and IR spectroscopy were performed in order to probe the ν(Fe-H) stretching mode of the two isomers and their deuterated counterparts. A ν(Fe-H) stretching mode was observed for the μ-H complex at 1220 cm(-1). However, the corresponding mode is not observed for the less stable H-term isomer.
We report evidence for the formation of long-lived photoproducts following excitation of iron(III) tetraphenylporphyrin chloride (Fe(III)TPPCl) in a 1:1 glass of toluene and CH2Cl2 at 77 K. The formation of these photoproducts is dependent on solvent environment and temperature, appearing only in the presence of toluene. No long-lived product is observed in neat CH2Cl2 solvent. A 2-photon absorption model is proposed to account for the power-dependent photoproduct populations. The products are formed in a mixture of spin states of the central iron(III) metal atom. Metastable six-coordinate high-spin and low-spin complexes and a five-coordinate high-spin complex of iron(III) tetraphenylporphyrin are assigned using structure-sensitive vibrations in the resonance Raman spectrum. These species appear in conjunction with resonantly enhanced toluene solvent vibrations, indicating that the Fe(III) compound formed following photoexcitation recruits a toluene ligand from the surrounding environment. Low-temperature transient absorption (TA) measurements are used to explain the dependence of product formation on excitation frequency in this photochemical model. The six-coordinate photoproduct is initially formed in the high-spin Fe(III) state, but population relaxes into both high-spin and low-spin state at 77 K. This is the first demonstration of coupling between the optical and magnetic properties of an iron-centered porphyrin molecule.
Research on simple [FeFe] hydrogenase model systems of type (mu-S(2)R)[Fe(CO)(3)](2) (R = C(2)H(4) (edt), C(3)H(6) (pdt)) which have been shown to function as robust electrocatalysts for proton reduction, provides a reference to understand the electronic and vibrational properties of the active site of [FeFe] hydrogenases and of more sophisticated model systems. In this study, the solution and solid state Raman spectra of (mu-edt)[Fe(CO)(3)](2) and of the corresponding (13)CO-labeled complex are presented and analyzed in detail, with focus on the nu(C=O) and nu(Fe-CO)/delta(Fe-C=O) vibrational regions. These regions are specifically important as vibrations involving CO ligands serve as probes for the "electron richness" of low-valent transition metal centers and the geometric structures of the complexes. The obtained vibrational spectra have been completely assigned in terms of the nu(C=O), nu(Fe-CO), and delta(Fe-C=O) modes, and the force constants of the important C=O and Fe-CO bonds have been determined using our Quantum Chemistry Centered Normal Coordinate Analysis (QCC-NCA). In the 400-650 cm(-1) region, fifteen mixed nu(Fe-CO)/delta(Fe-C=O) modes have been identified. The most prominent Raman peaks at 454, 456, and 483 cm(-1) correspond to a combination of nu(Fe-CO) stretching and delta(Fe-C=O) linear bending modes. The less intense peaks at 416 cm(-1) and 419 cm(-1) correspond to pure delta(Fe-C=O) linear bends. In the nu(C=O) region, the nu(C=O) normal modes at lower energy (1968 and 1964 cm(-1)) are almost pure equatorial (eq) nu(C=O)(eq) stretching vibrations, whereas the remaining four nu(C=O) normal modes show dominant (C=O)(eq) (2070 and 1961 cm(-1)) and (C=O)(ax) (2005 and 1979 cm(-1); ax = axial) contributions. Importantly, an inverse correlation between the f(C=O)(ax/eq) and f(Fe-CO)(ax/eq) force constants is obtained, in agreement with the idea that the Fe(I)-CO bond in these types of complexes is dominated by pi-backdonation. Compared to the reduced form of [FeFe] hydrogenase (H(red)), the nu(C=O) vibrational frequencies of (mu-edt)[Fe(CO)(3)](2) are higher in energy, indicating that the dinuclear iron core in (mu-edt)[Fe(CO)(3)](2) is less electron rich compared to H(red) in the actual enzyme. Finally, quantum yields for the photodecomposition of (mu-edt)[Fe(CO)(3)](2) have been determined.
Room temperature absorption and emission spectra of the all-trans isomers of decatetraene, dodecapentaene, tetradecahexaene, and hexadecaheptaene have been obtained in a series of nonpolar solvents. The resolved vibronic features in the optical spectra of these model systems allow the accurate determination of S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) and S(1) (2(1)A(g)(-)) --> S(0) (1(1)A(g)(-)) electronic origins as a function of solvent polarizability. These data can be extrapolated to predict the transition energies in the absence of solvent perturbations. The effects of the terminal methyl substituents on the transition energies also can be estimated. Franck-Condon maxima in the absorption and emission spectra were used to estimate differences between S(0) (1(1)A(g)(-)) --> S(1) (2(1)A(g)(-)) and S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) electronic origins and "vertical" transition energies. Experimental estimates of the vertical transition energies of unsubstituted, all-trans polyenes in vacuum as a function of conjugation length are compared with long-standing multireference configuration interaction (MRCI) treatments and with more recent ab initio calculations of the energies of the 2(1)A(g)(-) (S(1)) and 1(1)B(u)(+) (S(2)) states.