Fungicidal sprays are widely used for control of Botrytis fruit rot; however, the pathogen often develops resistance to frequently used fungicides. A 96-well plate micro-dilution broth bioassay developed for fungicide discovery was used to provide strawberry growers with a rapid assessment of the fungicide sensitivity of Botrytis isolates against 16 fungicides. Three sensitivity phenotypes were identified: benzimidazole and dicarboximide resistant, benzimidazole resistant and dicarboximide sensitive, and an intermediate response to both fungicides. Codon at position 198 in the β-tubulin gene confirmed benomyl resistance. This bioassay rapidly identifies fungicide resistance and allows growers to quickly adjust their disease management strategy.
Organo-clay fabric and physico-chemistry of marine mud play important roles in early sediment diagenesis including the development of mass physical properties, consolidation behavior, and sequestration of organic matter (OM) in sediments over geologic time. Transmission electron microscopy (TEM) images of nano- and microfabric reveal that organic matter is sequestered following enzymatic digestion despite the pervasive openness of pore-fluid pathways observed in 3D rotated images. The locations of sequestered organic matter correspond to those predicted by modeling of the potential energy of interaction. Initial flume experiments on high porosity clay-mineral-rich mud deposited under dynamic flow and static (vertical settlement) conditions...
Abstract The sediment at the interface immediately beneath the water column is distinct from deeper-lying sediments in its properties and, at least quantitatively, in the processes driving diagenesis. Progress in understanding the sediment-water interface can be based on consideration of fundamentals of biogeochemical particle / fluid interactions and on application of certain biological techniques especially suited to this challenging portion of the sediment column. This article reports results achieved by combining theoretical fundamentals and specialized experimental techniques in the study of the interface from selected depositional environments. For fine-grained and sandy deposits from fresh-water to coastal marine environments, the interface is characterized by exaggerated microrelief, great porosity, and significant biological alteration. Additional application of this research approach is poised to further our understanding of engineering, and acoustic and xenochemical responses of sedimentary materials, with special emphasis on the influence of the bio-organic phase of the interface upon its fabric and physical properties. Keywords: Microbiota Microfabric Porosity Sediment Pore Water Sediment-WATER Interface