Abstract Protein Kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α’). CK2 controls several cellular processes including proliferation, inflammation, and cell death. However, CK2α and CK2α’ possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α’ has been associated with neurodegeneration, especially Huntington’s disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α’ in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α’ presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α’ due to their high structural homology, especially in the targeted ATP binding site. Using computational analyses, we found a potential Type IV (“D” pocket) allosteric site on CK2α’ that contained different residues than CK2α and was distal from the ATP binding pocket featured in both kinases. With this potential allosteric site in mind, we screened a commercial library containing ∼29,000 allosteric-kinase-inhibitor-like compounds using a CK2α’ activity-dependent ADP-Glo TM Kinase assay. Obtained hits were counter-screened against CK2α revealing two CK2α’ selective compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Abstract Testis‐specific serine/threonine kinase 2 (TSSK2) is an important target for reversible male contraception. A high‐throughput screen of ≈17 000 compounds using a mobility shift assay identified two potent series of inhibitors having a pyrrolopyrimidine or pyrimidine core. The pyrrolopyrimidine 10 (IC 50 22 n m ; GSK2163632A) and the pyrimidine 17 (IC 50 31 n m ; ALK inhibitor 1) are the most potent TSSK2 inhibitors in these series, which contain the first sub‐100 nanomolar inhibitors of any TSSK isoform reported, except for the broad kinase inhibitor staurosporine. The novel, potent pyrimidine TSSK2 inhibitor compound 19 (IC 50 66 n m ; 2‐[[5‐chloro‐2‐[2‐methoxy‐4‐(1‐methylpiperidin‐4‐yl)anilino]pyrimidin‐4‐yl]amino]‐ N ‐methylbenzenesulfonamide) lacks the potential for metabolic activation. Compound 19 had a potency rank order of TSSK1>TSSK2>TSSK3>TSSK6, indicating that potent dual inhibitors of TSSK1/2 can be identified, which may be required for a complete contraceptive effect. The future availability of a TSSK2 crystal structure will facilitate structure‐based discovery of selective TSSK inhibitors from these pyrrolopyrimidine and pyrimidine scaffolds.
Abstract WEE2 oocyte meiosis inhibiting kinase is a well-conserved oocyte specific kinase with a dual regulatory role during meiosis. Active WEE2 maintains immature, germinal vesicle stage oocytes in prophase I arrest prior to the luteinizing hormone surge and facilitates exit from metaphase II arrest at fertilization. Spontaneous mutations at the WEE2 gene locus in women have been linked to total fertilization failure indicating that selective inhibitors to this kinase could function as non-hormonal contraceptives. Employing co-crystallization with WEE1 G2 checkpoint kinase inhibitors, we revealed the structural basis of action across WEE kinases and determined type I inhibitors were not selective to WEE2 over WEE1. In response, we performed in silico screening by FTMap/FTSite and Schrodinger SiteMap analysis to identify potential allosteric sites, then used an allosterically biased activity assay to conduct high-throughput screening of a 26 000 compound library containing scaffolds of known allosteric inhibitors. Resulting hits were validated and a selective inhibitor that binds full-length WEE2 was identified, designated GPHR-00336382, along with a fragment-like inhibitor that binds the kinase domain, GPHR-00355672. Additionally, we present an in vitro testing workflow to evaluate biological activity of candidate WEE2 inhibitors including; (1) enzyme-linked immunosorbent assays measuring WEE2 phosphorylation activity of cyclin dependent kinase 1 (CDK1; also known as cell division cycle 2 kinase, CDC2), (2) in vitro fertilization of bovine ova to determine inhibition of metaphase II exit, and (3) cell-proliferation assays to look for off-target effects against WEE1 in somatic (mitotic) cells.
Distribution of dietary vitamin A/all-trans retinol (ROL) throughout the body is critical for maintaining retinoid function in peripheral tissues and generating the retinylidene protein for visual function. RBP4-ROL is the complex of ROL with retinol-binding protein 4 (RBP4), which is present in the blood. Two membrane receptors, Retinol Binding Protein 4 Receptor 2 (RBPR2) in the liver and STimulated by Retinoic Acid 6 Retinol (STRA6) in the eye, bind circulatory RBP4 and this mechanism is critical for internalizing ROL into cells. Establishing methods to investigate receptor-ligand kinetics is essential in understanding the physiological function of vitamin A receptors for retinoid homeostasis. Using Surface Plasmon Resonance (SPR) assays, we can analyze the binding affinities and kinetic parameters of vitamin A membrane receptors with its physiological ligand RBP4. These methodologies can reveal new structural and biochemical information of RBP4-binding motifs in RBPR2 and STRA6, which are critical for understanding pathological states of vitamin A deficiency. In the eye, internalized ROL is metabolized to 11-cis retinal, the visual chromophore that binds to opsin in photoreceptors to form the retinylidene protein, rhodopsin. The absorbance of light causes the cis-to-trans isomerization of 11-cis retinal, inducing conformational changes in rhodopsin and the subsequent activation of the phototransduction cascade. Decreased concentrations of serum and ocular ROL can impact retinylidene protein formation, which in turn can cause rhodopsin mislocalization, apoprotein opsin accumulation, night blindness, and photoreceptor outer segment degeneration, leading to Retinitis Pigmentosa or Leber Congenital Amaurosis. Therefore, spectrophotometric methodologies to quantify the G protein-coupled receptor opsin-11-cis retinal complex in the retina are critical for understanding mechanisms of retinal cell degeneration in the above-mentioned pathological states. With these comprehensive methodologies, investigators will be able to better assess dietary vitamin A supply in maintaining systemic and ocular retinoid homeostasis, which is critical for generating and maintaining retinylidene protein concentrations in photoreceptors, which is critical for sustaining visual function in humans.
Protein kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α′). CK2 controls several cellular processes, including proliferation, inflammation, and cell death. However, CK2α and CK2α′ possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α′ has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α′ in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α′ presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α′ due to their high structural homology, especially in the targeted ATP-binding site. Using computational analyses, we found a potential type IV ("D" pocket) allosteric site that contained different residues between CK2α and CK2α′ and was distal from the ATP-binding pocket featured in both kinases. We decided to look for allosteric modulators that might interact in a biased fashion with the type IV pocket on both CK2α and CK2α′. We screened a commercial library containing ∼29,000 allosteric-kinase-inhibitor-like compounds using a CK2α′ activity-dependent ADP-Glo Kinase assay. Obtained hits were counter-screened against CK2α using the ADP-Glo Kinase assay, revealing two CK2α′-biased compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.