Abstract Background We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7 , with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10 −4 ) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10 −4 ). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10 −3 ), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10 −8 ). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10 −5 ). Conclusions Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
Our aim was to assess the real-world effectiveness of immune checkpoint inhibitors for treatment of patients with progressive multifocal leukoencephalopathy (PML).We conducted a multicenter survey compiling retrospective data from 79 PML patients, including 38 published cases and 41 unpublished cases, who received immune checkpoint inhibitors as add-on to standard of care. One-year follow-up data were analyzed to determine clinical outcomes and safety profile. Logistic regression was used to identify variables associated with 1-year survival.Predisposing conditions included hematological malignancy (n = 38, 48.1%), primary immunodeficiency (n = 14, 17.7%), human immunodeficiency virus/acquired immunodeficiency syndrome (n = 12, 15.2%), inflammatory disease (n = 8, 10.1%), neoplasm (n = 5, 6.3%), and transplantation (n = 2, 2.5%). Pembrolizumab was most commonly used (n = 53, 67.1%). One-year survival was 51.9% (41/79). PML-immune reconstitution inflammatory syndrome (IRIS) was reported in 15 of 79 patients (19%). Pretreatment expression of programmed cell death-1 on circulating T cells did not differ between survivors and nonsurvivors. Development of contrast enhancement on follow-up magnetic resonance imaging at least once during follow-up (OR = 3.16, 95% confidence interval = 1.20-8.72, p = 0.02) was associated with 1-year survival. Cerebrospinal fluid JC polyomavirus DNA load decreased significantly by 1-month follow-up in survivors compared to nonsurvivors (p < 0.0001). Thirty-two adverse events occurred among 24 of 79 patients (30.4%), and led to treatment discontinuation in 7 of 24 patients (29.1%).In this noncontrolled retrospective study of patients with PML who were treated with immune checkpoint inhibitors, mortality remains high. Development of inflammatory features or overt PML-IRIS was commonly observed. This study highlights that use of immune checkpoint inhibitors should be strictly personalized toward characteristics of the individual PML patient. ANN NEUROL 2023;93:257-270.
This scientific commentary refers to 'Increased beta synchronization underlies perception-action hyperbinding in functional movement disorders', by Pastötter
Abstract Objective To compare survival of subjects with COVID-19 treated in hospitals that either did or did not routinely treat patients with hydroxychloroquine or chloroquine. Methods We analysed data of COVID-19 patients treated in 9 hospitals in the Netherlands. Inclusion dates ranged from February 27 th 2020, to May 15 th , when the Dutch national guidelines no longer supported the use of (hydroxy)chloroquine. Seven hospitals routinely treated subjects with (hydroxy)chloroquine, two hospitals did not. Primary outcome was 21-day all-cause mortality. We performed a survival analysis using log-rank test and Cox-regression with adjustment for age, sex and covariates based on premorbid health, disease severity, and the use of steroids for adult respiratory distress syndrome, including dexamethasone. Results Among 1893 included subjects, 21-day mortality was 23.4% in 1552 subjects treated in hospitals that routinely prescribed (hydroxy)chloroquine, and 17.0% in 341 subjects that were treated in hospitals that did not. In the adjusted Cox-regression models this difference disappeared, with an adjusted hazard ratio of 1.17 (95%CI 0.88-1.55). When stratified by actually received treatment in individual subjects, the use of (hydroxy)chloroquine was associated with an increased 21-day mortality (HR 1.58; 95%CI 1.25-2.01) in the full model. Conclusions After adjustment for confounders, mortality was not significantly different in hospitals that routinely treated patients with (hydroxy)chloroquine, compared with hospitals that did not. We compared outcomes of hospital strategies rather than outcomes of individual patients to reduce the chance of indication bias. This study adds evidence against the use of (hydroxy)chloroquine in patients with COVID-19.
ObjectivesParkinson patients with chronic DBS routinely receive sensing-enabled implantable pulse generators upon battery replacement. Here we aimed to assess whether and/or how local field potential based reprogramming may be of use in this population.MethodsIn four Parkinson patients on chronic treatment with bilateral STN-DBS and implanted with the Percept™ PC implantable pulse generator, we employed an approach to select stimulation contacts and amplitudes based on beta-activity. When applicable, the effect of parameter adjustments on DBS effectiveness and DBS-induced side effects was assessed.ResultsIn one out of eight electrodes, the LFP-guided contact was different from the clinically determined one. Beta-based therapeutic windows could be defined in five out of eight electrodes. LFP-guided parameter adjustments were performed in two patients, resulting in improved motor fluctuations and decreased stimulation-induced side effects respectively.DiscussionLFP-guided DBS reprogramming has the potential to improve effectiveness and decrease side effects in selected cases. Prospective controlled research is required to assess the clinical usefulness of LFP-guided DBS reprogramming.
With functional MRI, we recently identified fronto-cerebellar activations in predicting time to reach a target and basal ganglia activation in velocity estimation, that is, small interval assessment. We now tested these functions in patients with Parkinson's disease (PD) and degenerative cerebellar ataxia. They watched a ball that repeatedly appeared, moved, and disappeared. Velocity, stop locations, and predicted target locations as well as time to reach a target were indicated. Compared with controls, PD patients showed impaired velocity estimation (momentary mode) whereas temporal prediction was selectively impaired in cerebellar ataxia patients. The latter highlights feed-forward processing within fronto-cerebellar circuitry. Impaired velocity estimation in PD fits the concept of a basal ganglia clock function.