Similar to functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) detects the changes of hemoglobin species inside the brain, but via differences in optical absorption. Within the near-infrared spectrum, light can penetrate biological tissues and be absorbed by chromophores, such as oxyhemoglobin and deoxyhemoglobin. What makes fNIRS more advantageous is its portability and potential for long-term monitoring. This paper reviews the basic mechanisms of fNIRS and its current clinical applications, the limitations toward more widespread clinical usage of fNIRS, and current efforts to improve the temporal and spatial resolution of fNIRS toward robust clinical usage within subjects. Oligochannel fNIRS is adequate for estimating global cerebral function and it has become an important tool in the critical care setting for evaluating cerebral oxygenation and autoregulation in patients with stroke and traumatic brain injury. When it comes to a more sophisticated utilization, spatial and temporal resolution becomes critical. Multichannel NIRS has improved the spatial resolution of fNIRS for brain mapping in certain task modalities, such as language mapping. However, averaging and group analysis are currently required, limiting its clinical use for monitoring and real-time event detection in individual subjects. Advances in signal processing have moved fNIRS toward individual clinical use for detecting certain types of seizures, assessing autonomic function and cortical spreading depression. However, its lack of accuracy and precision has been the major obstacle toward more sophisticated clinical use of fNIRS. The use of high-density whole head optode arrays, precise sensor locations relative to the head, anatomical co-registration, short-distance channels, and multi-dimensional signal processing can be combined to improve the sensitivity of fNIRS and increase its use as a wide-spread clinical tool for the robust assessment of brain function.
To assess the risk of percutaneous and mucosal exposure to HIV-contaminated fluids among medical housestaff and the role of zidovudine (ZDV) postexposure use, 69 residents and fellows were surveyed with a self-administered questionnaire. Twenty-four exposures to HIV-infected fluids (22 needlesticks, 1 mucosal splash, and 1 other injury) were reported in 94 person-years (py) with a rate of 0.25/py. Accidents were common during the first training year (22 of 24; rate 1.26/py). Most occurred while directly caring for patients (23 of 24); blood was involved in 19 cases and CSF in 5. Eighteen reported being tired at the time of accident. Mean on-duty time was 15.1 hours. Accidents occurred during: venipuncture, 6 of 24; needle recapping, 5; blood transfer to test tube, 5; arterial puncture during CPR, 2; other actions, 6. Available baseline (12 of 24) and follow-up (7 of 24) HIV antibody testing were all negative. Six residents elected to take ZDV within 24 hours of exposure; 5 received 600-1200 mg/d for 4-6 weeks, and 1 for 3 days. Gastrointestinal side effects were noted during prolonged ZDV therapy, and diarrhea was frequently seen (3 of 5). Bone marrow suppression did not occur. The rate of exposure to HIV-infected body fluids is high, especially during the first year of training. Serial HIV testing may help define the role of ZDV use in preventing seroconversion after occupational exposure, as a double-blind, placebo-controlled trial appears to be currently precluded.
Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment.Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions.Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets.The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity.Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.
Postural orthostatic tachycardia syndrome (POTS) is a disabling condition characterized by orthostatic intolerance with tachycardia in the absence of drop-in blood pressure. A custom-built near-infrared spectroscopy device (NIRS) is applied to monitor the muscle oxygenation, noninvasively in patients undergoing incremental head-up tilt table (HUT). Subjects (6 POTS patients and 6 healthy controls) underwent 30 mins of 70°on a HUT. The results showed a significant difference in deoxyhemoglobin (Hb), change-in-oxygenation (ΔOxy) and blood volume (ΔBV) between patients and healthy controls. However, oxyhemoglobin (HbO
The oxygenation level of a tissue is an important marker of the health of the tissue and has a direct effect on performance. It has been shown that the blood flow to the paretic muscles of hemiparetic post-stroke patients is significantly reduced compared to non-paretic muscles. It is hypothesized that hemodynamic activity in paretic muscles is suppressed as compared to non-paretic muscles, and that oximetry can be used to measure this disparity in real-time. In order to test this hypothesis, a custom-made oximetry device was used to measure hemodynamic activity in the forearm extensor muscles in post-stroke patients’ paretic and non-paretic sides and in a control population during three exercise levels calibrated to the subject’s maximum effort. The change in oxygenation (Δ Oxy) and blood volume (Δ BV) were calculated and displayed in real-time. Results show no apparent difference in either Δ Oxy or Δ BV between control subjects’ dominant and non-dominant muscles. However, the results show a significant difference in Δ Oxy between paretic and non-paretic muscles, as well as a significant difference between normalized post-stroke and control data. Further work will be necessary to determine if the observed difference between the paretic and non-paretic muscles changes over the course of physical therapy and can be correlated with functional improvements.
Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68% of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25% for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51% relative to fMRI. The positive predictive value for within subject analyses was lower (41.5%), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.