Polychlorinated naphthalenes (PCNs), one of Persistent Organic Pollutants (POPs), and are colorless crystalline substances with similar structure and physical and chemical properties with PCB (polychlorinated biphenyl), and are produced by the chlorination of naphthalene. PCN is one of POPs are rarely degraded in the environment; consequently, they negatively impact the environment by threatening human health and the ecosystem. In this study, the potential of a stable treatment for lab-scale-incinerated waste containing PCNs was evaluated. For this study, waste containing PCNs were selected as the surface coating agent, mixed sample, and technical sample. The results revealed that when the PCNs concentration was 34.552 ~ 2,582.463 ng/g, the concentrations of Mono-CN and Tetra-CN were higher than those of other homologues. The incineration treatment conditions were derived by measuring three parts, after which the elemental composition was analyzed and the calorific value, theoretical air content, and residence time were calculated. Using the temperature of the target sample, thermogravimetric analysis revealed that the incineration treatment can be achieved at the incineration temperature of the existing incineration facility via weight change. Therefore, the incineration temperature was set between 850 and 1,100℃; however, the incineration temperature of the sample containing a high concentration of PCNs was set at 350, 500, 850, and 1,100℃. At 350 and 500℃, high concentrations of CO and NOx were observed, which could be attributed to incomplete combustion. Furthermore, heat-sensitive PCNs showed a de-chlorination reaction between 200 to 440℃. In addition, the decomposition rate (DRE) slightly increased according to the incineration temperature increase.
This study investigated the environmental and economical assessment for sewage sludge treatment options including biogasification, incineration, carbonization, drying, and solidification. Additionally it is also investigated the economical feasibility of the current guidelines (Digestion efficiency for organic waste = 45 %, Moisture content of sludge = 95 and 93 %) and it aimed to suggest the scientific informations for a policy-making. For the economical feasibility the 30 plants with anaerobic digestion treatment and the 17 plants without anaerobic digestion treatment were investigated. The result of the comparison of sewage sludge treatment options showed that anaerobic digestion+incineration was the most economically feasible considering incineration and drying. For smaller treatment capacity, solidification was the most economically feasible considering carbonization and solidification and anaerobic digestion+carbonization was the most economically feasible considering carbonization and solidification.
The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was 850℃ and 1100℃. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than 1,100℃.