Remaining useful life (RUL) prediction is a key process in condition-based maintenance for machines. It contributes to reducing risks and maintenance costs and increasing the maintainability, availability, reliability, and productivity of machines. This paper proposes a new method based on stochastic process models for machine RUL prediction. First, a new stochastic process model is constructed considering the multiple variability sources of machine stochastic degradation processes simultaneously. Then the Kalman particle filtering algorithm is used to estimate the system states and predict the RUL. The effectiveness of the method is demonstrated using simulated degradation processes and accelerated degradation tests of rolling element bearings. Through comparisons with other methods, the proposed method presents its superiority in describing the stochastic degradation processes and predicting the machine RUL.
Deep learning (DL) based diagnosis models have to be trained by large quantities of monitoring data of machines. However, in real-case scenarios, machines operate under the normal condition in most of their life time while faults seldom happen. Therefore, though massive data are accessible, most are data of the normal condition while fault data are still extremely limited. In other words, fault diagnosis of real machines is actually a few-shot diagnosis problem. To deal with few-shot diagnosis, this article proposes adaptive knowledge transfer with multiclassifier ensemble (AKTME) under the paradigm of continual machine learning. In AKTME, knowledge learned by DL models is considered to be represented by the learnable filter kernels (FKs). The key of AKTME is a proposed continual weighted updating (CWU) technique of FKs. By CWU, shared FKs are distilled from multiple auxiliary tasks and adaptively transferred to the target task. Then by multiclassifier ensemble, AKTME is able to recognize faults with few fault data accessible. AKTME is applied on two few-shot diagnosis cases. Results verify that AKTME achieves higher diagnosis accuracies than recently proposed methods. Moreover, AKTME tends to improve the diagnosis accuracy as it prelearns on more auxiliary tasks continually.
Objective Neurodegenerative diseases affect millions of families around the world, while various wearable sensors and corresponding data analysis can be of great support for clinical diagnosis and health assessment. This systematic review aims to provide a comprehensive overview of the existing research that uses wearable sensors and features for the diagnosis of neurodegenerative diseases. Methods A systematic review was conducted of studies published between 2015 and 2022 in major scientific databases such as Web of Science, Google Scholar, PubMed, and Scopes. The obtained studies were analyzed and organized into the process of diagnosis: wearable sensors, feature extraction, and feature selection. Results The search led to 171 eligible studies included in this overview. Wearable sensors such as force sensors, inertial sensors, electromyography, electroencephalography, acoustic sensors, optical fiber sensors, and global positioning systems were employed to monitor and diagnose neurodegenerative diseases. Various features including physical features, statistical features, nonlinear features, and features from the network can be extracted from these wearable sensors, and the alteration of features toward neurodegenerative diseases was illustrated. Moreover, different kinds of feature selection methods such as filter, wrapper, and embedded methods help to find the distinctive indicator of the diseases and benefit to a better diagnosis performance. Conclusions This systematic review enables a comprehensive understanding of wearable sensors and features for the diagnosis of neurodegenerative diseases.
Abstract Wear debris analysis (WDA) enables the provision of essential information towards the monitoring of machine fault diagnosis and the analysis of wear mechanism. However, this experience-based technology has not yet been automated for the identification of similar particle types due to the small number of samples and highly dispersed features. To address this problem, a knowledge-guided convolutional neural network model is developed to focus on two representative severe wear particles: fatigue and severe sliding particles that have highly similar contours but weakly discriminative surfaces. The height images of particle surfaces are adopted as the initial objective. Characterized by typical particle features, the empirical WDA knowledge is represented into the feature-marked images, and further automatically learned by a U-Net-based knowledge extraction network. By weighting with the U-Net output, a knowledge-guided particle classification network is constructed to identify similar particles under a small number of samples. With this methodology, the empirical WDA knowledge is transferred to guide the classification network for locating the discriminative features in particle height images. Thirty sets of fatigue and severe sliding particles are acquired from wear tests as the training and testing samples. For verification, the network kernel is visualized to trace the particle feature propagation in the classification. Experimental results reveal that the proposed method can accurately identify fault particles that are acquired from wear tests.
Time-varying gearmesh stiffness (TVGS) is the main cause of gear vibration, and its accuracy affects the responses of dynamic models. An exponential curve model based on the Saint Venant’s Principle is proposed to calculate the gearmesh stiffness of cracked spur gears in this paper. With the proposed model, the TVGS under the circumstances of healthy condition and four crack cases are computed, whose results have a good agreement with those of finite element method (FEM). Therefore, the exponential curve model can be used to estimate the TVGS and an alternative to FEM in gearmesh stiffness calculation is provided.