Carbonaceous-based metal-free catalysts are promising aspirants for effective electrocatalytic hydrogen generation. Herein, we synthesized mesoporous-activated carbon nanosheets (ELC) from biomass eucalyptus leaves through KOH activation. The microstructure, structural, and textural characteristics of the prepared materials were characterized by FE-SEM, Raman, XRD, and BET measurements. The high temperature (700 °C) KOH-activated ELC nanosheets exhibited an interconnected nanosheet morphology with a large specific surface area (1436 m2/g) and high mesoporosity. The ELC-700 catalyst exhibited an excellent electrocatalytic HER performance with a low overpotential (39 mV at 10 mA/cm2), excellent durability, and a Trivial Tafel slope (36 mV/dec) in 0.5 M H2SO4 electrolyte. These findings indicate a new approach for developing excellent biomass-derived electrocatalysts for substantially efficient green hydrogen production.
A streamlined design for nanoarchitecture can substantially enhance the performance of battery-type electrodes, leading to advanced hybrid supercapacitors (HSCs) with improved redox properties. Metal-organic frameworks (MOFs) are promising for electrochemical...
Binder-free NiCo-MOF@Ni(OH) 2 nanoarchitectures were developed via in situ deposition for aqueous supercapacitors. Multi-charge transport routes were realized and the DFT results revealed the significant conductivity and charge storage capability.
Nickel foam-supported binder-free cobalt manganese selenide (CoMnSe@NF) was grown by in situ deposition using metal organic frameworks (MOFs) as the template with metal node engineering. The CoMnSe@NF electrode employed as the positive electrode for supercapacitors delivered well-pronounced conductivity, a high areal capacity (Ca) of 1714 mC cm–2 at 1 mA cm–2, and a specific capacity (Cs) of 519 C g1– (1 A g–1) withstanding over 5000 cycles with a good retention of 87% of its initial capacity. The outstanding electrochemical profile of CoMnSe@NF can be credited to the tailor-made synergetic surface, bearing densely packed 2-dimensional sheets harboring numerous redox sites with an even distribution of voids, allowing easy passageway and diffusion of the electrolyte. Armed with the said caliber of CoMnSe@NF, the asymmetric device fabricated (CoMnSe@NF-2h//O, N, S@AC@NF) delivered a remarkable specific capacity (Cs) of 139 C g–1, maximum energy density (Es) of 35.47 W h kg–1, and a power density of 11,500 W kg–1, remaining intact beyond 10,000 charge–discharge cycles and retaining 82.6% of the initial capacity.