The aim of the present study was to evaluate a new multi-phosphonate surface treatment (SurfLink®) in an unloaded sheep model. Treated implants were compared to control implants in terms of bone to implant contact (BIC), bone formation, and biomechanical stability. The study used two types of implants (rough or machined surface finish) each with either the multi-phosphonate Wet or Dry treatment or no treatment (control) for a total of six groups. Animals were sacrificed after 2, 8, and 52 weeks. No adverse events were observed at any time point. At two weeks, removal torque showed significantly higher values for the multi-phosphonate treated rough surface (+32% and +29%, Dry and Wet, respectively) compared to rough control. At 52 weeks, a significantly higher removal torque was observed for the multi-phosphonate treated machined surfaces (+37% and 23%, Dry and Wet, respectively). The multi-phosphonate treated groups showed a positive tendency for higher BIC with time and increased new-old bone ratio at eight weeks. SEM images revealed greater amounts of organic materials on the multi-phosphonate treated compared to control implants, with the bone fracture (from the torque test) appearing within the bone rather than at the bone to implant interface as it occurred for control implants.
Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.
Objective To evaluate biocompatibility of biodegradable sleeves containing antimicrobial agents, designed for local drug delivery to prevent implant‐related infection. Study Design Synthetic polyester sleeves (a copolymer of glycolide, caprolactone, trimethylene carbonate, lactide) were cast as thin films. The antimicrobial agents incorporated in the sleeves included gentamicin sulfate, triclosan, or a combination of these drugs. Animals Adult sheep (n = 15). Methods Two limited contact dynamic compression plates (LC‐DCP) with or without sleeves were implanted on tibiae (bilateral) of 15 sheep. Sleeves were placed over the plates before implantation. Beneath half of the plates, 5‐mm drill hole defects were made in the near cortex. Samples were harvested 4 weeks later for histology and microradiography. Results Macroscopically, no irritation of bone or adjacent tissue was seen. Small remnants of sleeves were visible on histology, and positively correlated with the presence of macrophages and foreign body cells. Thick sections showed no difference between the test samples and controls in terms of fibrous capsule formation, periosteal remodeling, and defect remodeling. Inflammatory cells, macrophages, and foreign body cells were more prominent in sections with sleeves, but were not statistically significantly different from controls. Cell numbers were within normal physiologic limits normally seen as cellular response to foreign bodies consisting of polymers. Conclusion The normal healing response indicated that the biodegradable sleeves demonstrate tissue biocompatibility.