Immune system plays a key role in cancer prevention as well as in its initiation and progression. During multistep development of tumors, cells must acquire the capability to evade immune destruction. Both in vitro and in vivo studies showed that thyroid tumor cells can avoid immune response by promoting an immunosuppressive microenvironment. The recruitment of immunosuppressive cells such as TAMs (tumor-associated macrophages), TAMCs (tumor-associated mast cells), MDSC (myeloid-derived suppressor cells), TANs (tumor-associated neutrophils) and Tregs (regulatory T cells) and/or the expression of negative immune checkpoints, like PD-L1 (programmed death-ligand 1), CTLA-4 (cytotoxic T-lymphocyte associated protein 4), and/or immunosuppressive enzymes, as IDO1 (indoleamine 2,3-dioxygenase 1), are just some of the mechanisms that thyroid cancer cells exploit to escape immune destruction. Some authors systematically characterized immune cell populations and soluble mediators (chemokines, cytokines, and angiogenic factors) that constitute thyroid cancer microenvironment. Their purpose was to verify immune system involvement in cancer growth and progression, highlighting the differences in immune infiltrate among tumor histotypes. More recently, some authors have provided a more comprehensive view of the relationships between tumor and immune system involved in thyroid carcinogenesis. The Cancer Genome Atlas (TCGA) delivered a large amount of data that allowed to combine information on the inflammatory microenvironment with gene expression data, genetic and clinical-pathological characteristics, and differentiation degree of papillary thyroid carcinoma (PTC). Moreover, using a new sensitive and highly multiplex analysis, the NanoString Technology, it was possible to divide thyroid tumors in two main clusters based on expression of immune-related genes. Starting from these results, the authors performed an immune phenotype analysis that allowed to classify thyroid cancers in hot, cold, or intermediate depending on immune infiltration patterns of the tumor microenvironment. The aim of this review is to provide a comprehensive and updated view of the knowledge on immune landscape of thyroid tumors. Understanding interactions between tumor and microenvironment is crucial to effectively direct immunotherapeutic approaches in the treatment of thyroid cancer, particularly for those not responsive to conventional therapies.
Abstract Context In 2005, a nationwide program of iodine prophylaxis on a voluntary basis was implemented in Italy by law. However, recent data on iodine status are lacking. Objective The aim of this study was to evaluate efficiency, effectiveness, and possible adverse effects (increased occurrence of thyroid autoimmunity and hyperthyroidism) of the Italian iodine prophylaxis program. Methods From 2015 to 2019, a nationwide survey was performed. The use of iodized salt was evaluated in a sample of 164 593 adults and in 998 school canteens. A sample of 4233 schoolchildren (aged 11-13 years) was recruited to assess urinary iodine concentration, prevalence of goiter, and thyroid hypoechogenicity on ultrasound, with the latter being an indirect indicator of thyroid autoimmunity. Neonatal TSH values of 197 677 infants screened in regions representative of Northern, Central, and Southern Italy were analyzed to investigate the percentage of TSH values >5.0 mIU/L. Data on methimazole prescriptions were analyzed as indirect indicators of new cases of hyperthyroidism. Results The prevalence of the use of iodized salt was 71.5% in adult population and 78% in school canteens. A median urinary iodine concentration of 124 μg/L, a prevalence of goiter of 2.2%, and a prevalence of thyroid hypoechogenicity of 5.7% were observed in schoolchildren. The percentage of neonatal TSH values >5.0 mIU/L resulted still higher (5.1%) than the World Health Organization threshold of 3.0%, whereas the prescriptions of methimazole showed a reduction of 13.5%. Conclusion Fifteen years of iodine prophylaxis have led to iodine sufficiency in Italy, although there still is concern about iodine nutritional status during pregnancy.
Chromosomal rearrangements linking the promoter(s) and N-terminal domain of unrelated gene(s) to the C terminus of RET result in constitutively activated chimeric forms of the receptor in thyroid cells (RET/PTC). RET/PTC rearrangements are thought to be tumor-initiating events; however, the early biological consequences of RET/PTC activation are unknown. To explore this, we generated clonal lines derived from well-differentiated rat thyroid PCCL3 cells with doxycycline-inducible expression of either RET/PTC1 or RET/PTC3. As previously shown in other cell types, RET/PTC1 and RET/PTC3 oligomerized and displayed constitutive tyrosine kinase activity. Neither RET/PTC1 nor RET/PTC3 conferred cells with the ability to grow in the absence of TSH, likely because of concomitant stimulation of both DNA synthesis and apoptosis, resulting in no net growth in the cell population. Effects of RET/PTC on DNA synthesis and apoptosis did not require direct interaction of the oncoprotein with either Shc or phospholipase Cgamma. Acute expression of the oncoprotein decreased TSH-mediated growth stimulation due to interference of TSH signaling by RET/PTC at multiple levels. Taken together, these data indicate that RET/PTC is a weak tumor-initiating event and that TSH action is disrupted by this oncoprotein at several points, and also predict that secondary genetic or epigenetic changes are required for clonal expansion.
Abstract Context Anaplastic thyroid carcinomas (ATCs) and poorly differentiated thyroid carcinomas (PDTCs) exhibit distinct immune-related gene expression profiles. Most ATCs are characterized by active immune interactions (hot or altered immunosuppressed immunophenotypes), while PDTCs are largely immunologically inert (cold immunophenotypes). Objective This study aimed to elucidate the mechanisms driving these divergent immunological fates, focusing on the Wnt/β-catenin pathway and TP53 mutations. Results Our data reveal that ATCs frequently harbor TP53 mutations (83.3%), which correlate with a hot immunophenotype, characterized by high expression of β-catenin-regulated cytokine CCL4 and recruitment of CD103+ dendritic cells. Conversely, PDTCs, with a lower incidence of TP53 mutations (12.5%), often exhibit a cold immunophenotype. In cold cancers and PDTCs, β-catenin is overexpressed suggesting that Wnt/β-catenin pathway activation drives immune exclusion through CCL4 downregulation. Further analysis indicated that loss of p53 function is inversely correlated with β-catenin expression. P53-mutated cancers showed significantly higher expression of CCL4 and densities of CD103+ dendritic cells compared to their p53-wild-type counterparts. Additionally, p53-mutated ATCs expressed a higher number of immune-related genes, supporting the role of p53 loss in activating immune responses in cancer. Conclusion Our study indicates a potential correlation between the activation of the Wnt/β-catenin pathway and the development of cold thyroid cancers, which may be mediated by the suppression of CCL4 expression. Concurrently, mutations in the p53 gene appear to be linked with the occurrence of hot thyroid cancers. While these associations are compelling, they are based on observational data. Experimental research is necessary to determine the causal relationships underlying these findings.
Tyrosine kinase inhibitors (TKIs) are evaluated for treatment of radioiodine refractory thyroid cancer. Their effects in this setting are based on blockade of proangiogenic signaling mediated by receptors for vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGF). Most TKIs also block other cancer-relevant kinases, such as B-type Raf kinase (BRAF), which are constitutively activated in approximately half of papillary thyroid carcinomas (PTCs), but the impact of these effects is not clear.The aim of our study was to investigate the impact of BRAF(V600E) on proangiogenic gene expression and microvascular features of PTCs.mRNA levels for VEGFA, VEGF receptors, and coreceptors (VEGFRs 1, 2, and 3, neuropilin-1), and PDGF receptor β (PDGFRβ or PDGFRB) were measured with real-time PCR in BRAF(V600E) (n=55) and wild-type BRAF (BRAF-wt; n=35) PTCs. VEGF and VEGFR protein expression and microvessel densities (MVD) and lymphatic vessel densities (LVDs) were assessed by immunohistochemistry in 22 of the 90 PTCs (including 11 BRAF(V600E) cases). Angiogenic gene expression was also studied in vitro after induction/silencing of the BRAF(V600E) mutation in thyrocyte lines.Transcript levels of proangiogenic factors were significantly lower in BRAF(V600E) PTCs versus BRAF-wt PTCs (P<0.0001), but MVD and LVDs were not significantly different. VEGFA mRNA levels in thyroid cell lines decreased when BRAF(V600E) mutation was induced (P=0.01) and increased when it was silenced (P=0.01).Compared with BRAF-wt PTCs, those harboring BRAF(V600E) exhibit downregulated VEGFA, VEGFR, and PDGFRβ expression, suggesting that the presence of BRAF mutation does not imply a stronger prediction of response to drugs targeting VEGF and PDGFB signaling pathways.
Individualized management, incorporating papillary thyroid cancer (PTC) variant-specific risk, is conceivably a useful treatment strategy for PTC, which awaits comprehensive data demonstrating differential risks of PTC variants to support.This study sought to establish the differential clinicopathological risk of major PTC variants: conventional PTC (CPTC), follicular-variant PTC (FVPTC), and tall-cell PTC (TCPTC).This was a retrospective study of clinicopathological outcomes of 6282 PTC patients (4799 females and 1483 males) from 26 centers and The Cancer Genome Atlas in 14 countries with a median age of 44 years (interquartile range, 33-56 y) and median follow-up time of 37 months (interquartile range, 15-82 mo).The cohort consisted of 4702 (74.8%) patients with CPTC, 1126 (17.9%) with FVPTC, and 239 (3.8%) with TCPTC. The prevalence of high-risk parameters was significantly different among the three variants, including extrathyroidal invasion, lymph node metastasis, stages III/IV, disease recurrence, mortality, and the use (need) of radioiodine treatment (all P < .001), being highest in TCPTC, lowest in FVPTC, and intermediate in CPTC, following an order of TCPTC > CPTC ≫ FVPTC. Recurrence and mortality in TCPTC, CPTC, and FVPTC were 27.3 and 6.7%, 16.1 and 2.5%, and 9.1 and 0.6%, corresponding to events per 1000 person-years (95% confidence interval [CI]) of 92.47 (64.66-132.26) and 24.61 (12.31-49.21), 34.46 (30.71-38.66), and 5.87 (4.37-7.88), and 24.73 (18.34-33.35) and 1.68 (0.54-5.21), respectively. Mortality hazard ratios of CPTC and TCPTC over FVPTC were 3.44 (95% CI, 1.07-11.11) and 14.96 (95% CI, 3.93-56.89), respectively. Kaplan-Meier survival analyses showed the best prognosis in FVPTC, worst in TCPTC, and intermediate in CPTC in disease recurrence-free probability and disease-specific patient survival. This was particularly the case in patients at least 45 years old.This large multicenter study demonstrates differential prognostic risks of the three major PTC variants and establishes a unique risk order of TCPTC > CPTC ≫ FVPTC, providing important clinical implications for specific variant-based management of PTC.