Scheduled to launch in October 2024, NASA’s Europa Clipper will set out on a journey to explore the habitability of Jupiter’s icy ocean world Europa. After a 5.5 yr cruise that includes gravity assists at Mars and Earth, the spacecraft will enter orbit around Jupiter and will perform nearly 50 flybys of Europa over a four-year period. To explore Europa as an integrated system and achieve a complete picture of its habitability, the Europa Clipper mission has three main science objectives to characterize: (1) the ice shell and ocean including their heterogeneity, properties, and surface–ice–ocean exchange; (2) Europa’s composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) Europa’s geology including surface features and localities of high science interest. Additionally, several cross-cutting science topics will be investigated through searching for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. These science objectives will be accomplished using a highly capable suite of remote-sensing and in-situ instruments. The remote sensing payload consists of the Europa Ultraviolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS) consisting of a wide and a narrow angle camera (WAC, NAC), the Mapping Imaging Spectrometer for Europa (MISE), the Europa Thermal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The in-situ instruments are the Europa Clipper Magnetometer (ECM), the Plasma Instrument for Magnetic Sounding (PIMS), the SUrface Dust Analyzer (SUDA), and the MAss Spectrometer for Planetary Exploration (MASPEX). Gravity and radio science will be obtained using the spacecraft's telecommunication system, and valuable scientific data will be acquired by the spacecraft’s radiation monitoring system. Assembly, test, and launch operations (ATLO) of the Europa Clipper spacecraft are progressing well, and the flight system integration and environmental testing has been completed at the Jet Propulsion Laboratory. Currently, the flight system is undergoing operations testing, and in May 2024, the spacecraft will be shipped to NASA’s Kennedy Space Center at Cape Canaveral, Florida. There, the remaining integration activities will occur for the solar array and REASON antennas followed by final flight system tests. The launch period begins on 10 October 2024. To provide details on the mission’s instruments and planned investigations, the Europa Clipper science team is publishing manuscripts in a special issue of Space Science Reviews, and the team continues to work towards optimizing science return through preparation of the mission’s Strategic Science Planning Guide. As well, collaborative science opportunities with ESA’s JUpiter ICy moons Explorer (JUICE) mission, which will overlap in its tour period at Jupiter and make observations of Europa, are being discussed informally among the science teams. Onward to Europa!
The Kuiper Belt is a distant region of the Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a Cold Classical Kuiper Belt Object, a class of objects that have never been heated by the Sun and are therefore well preserved since their formation. Here we describe initial results from these encounter observations. MU69 is a bi-lobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color and compositional heterogeneity. No evidence for satellites, ring or dust structures, gas coma, or solar wind interactions was detected. By origin MU69 appears consistent with pebble cloud collapse followed by a low velocity merger of its two lobes.
[1] High-resolution compositional data from Moon Mineralogy Mapper (M3) for the Moscoviense region on the lunar farside reveal three unusual, but distinctive, rock types along the inner basin ring. These are designated "OOS" since they are dominated by high concentrations of orthopyroxene, olivine, and Mg-rich spinel, respectively. The OOS occur as small areas, each a few kilometers in size, that are widely separated within the highly feldspathic setting of the basin rim. Although the abundance of plagioclase is not well constrained within the OOS, the mafic mineral content is exceptionally high, and two of the rock types could approach pyroxenite and harzburgite in composition. The third is a new rock type identified on the Moon that is dominated by Mg-rich spinel with no other mafic minerals detectable (<5% pyroxene, olivine). All OOS surfaces are old and undisturbed since basin formation. They are effectively invisible in image data and are only recognized by their distinctive composition identified spectroscopically. The origin of these unusual lithologies appears to be linked to one or more magmatic intrusions into the lower crust, perhaps near the crust-mantle interface. Processes such as fractional crystallization and gravity settling within such intrusions may provide a mechanism for concentrating the mafic components within zones several kilometers in dimension. The OOS are embedded within highly anorthositic material from the lunar crust; they may thus be near contemporaneous with crustal products from the cooling magma ocean.
The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of $\approx$40 km for Nix and Hydra and ~10 km for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of $\approx$2. All four moons have high albedos ( $\approx$50-90 %) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages $\gtrsim$ 4 Ga. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.
[1] Changes in observed photometric intensity on a planetary surface are caused by variations in local viewing geometry defined by the radiance incidence, emission, and solar phase angle coupled with a wavelength-dependent surface phase function f(α, λ) which is specific for a given terrain. In this paper we provide preliminary empirical models, based on data acquired inflight, which enable the correction of Moon Mineralogy Mapper (M3) spectral images to a standard geometry with the effects of viewing geometry removed. Over the solar phase angle range for which the M3 data were acquired our models are accurate to a few percent, particularly where thermal emission is not significant. Our models are expected to improve as additional refinements to the calibrations occur, including improvements to the flatfield calibration; improved scattered and stray light corrections; improved thermal model corrections; and the computation of more accurate local incident and emission angles based on surface topography.
Abstract The New Horizons spacecraft extended the range in solar phase angle coverage for Pluto’s moon Charon from 1.°8—the maximum observable from Earth—to 170°. This extraordinary expansion in range has enabled photometric modeling and a robust determination of Charon’s phase integral and Bond albedo at visible wavelengths. Photometric modeling shows that Charon is similar in its photometric properties to other icy moons, except that its single particle phase function is more isotropic, suggesting the Kuiper Belt may represent a new regime for surface alteration processes. Charon’s phase integral is 0.70 ± 0.04 and its Bond albedo is 0.29 ± 0.05.
The Visual and Infrared Mapping Spectrometer (VIMS) on Cassini has obtained spatially resolved spectra on satellites of Saturn. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided data on both the dark material and the transition zone between the dark material and the visually bright ice. The dark material has low albedo with a linear increase in reflectance with wavelength, 3-micron water, and CO2 absorptions. The transition between bright and dark regions shows mixing with unusual optical properties including increased blue scattering and increasing strength of a UV absorber in areas with stronger ice absorptions. Similar spectral effects are observed on other Saturnian satellites and in the rings. We have been unable to match these spectral properties and trends using tholins and carbon compounds. However, the dark material is spectrally matched by fine-grained metallic iron plus nano-phase hematite and adsorbed water which contribute UV and 3-micron absorption, respectively. The blue scattering peak and UV absorption can be explained by Rayleigh scattering from sub-micron particles with a UV absorption, or a combination of Rayleigh scattering and Rayleigh absorption as has been attributed to spectral properties of the Moon. A new radiative transfer model that includes Rayleigh scattering and Rayleigh absorption has been constructed. Models of ice, sub-micron metallic iron, hydrated iron oxide, and trace CO2 explain the observed spectra. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. A possible explanation is that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or the dark material is simply covered by clean fine-grained ice particles, for example, from the E-ring.
--------------------------------------------------------------------------------