Targeting glycosphingolipid synthesis has emerged as a novel approach for treating metabolic diseases. 32 (EXEL-0346) represents a new class of glucosylceramide synthase (GCS) inhibitors. This report details the elaboration of hit 8 with the goal of achieving and maintaining maximum GCS inhibition in vivo. 32 inhibited GCS with an IC(50) of 2 nM and achieved maximum hepatic GCS inhibition after four or five daily doses in rodents. Robust improvements in glucose tolerance in DIO mice and ZDF rats were observed after 2 weeks of q.d. dosing. Four weeks of dosing resulted in decreased plasma triglycerides and reduced hepatic fat deposition. Thus, 32 provides insight into the amount of metabolic regulation that can be restored following achievement of maximal target knockdown.
Glycogen synthase kinase-3 plays an essential role in multiple biochemical pathways in the cell, particularly in regards to energy regulation. As such, Glycogen synthase kinase-3 is an attractive target for pharmacological intervention in a variety of disease states, particularly non-insulin dependent diabetes mellitus. However, due to homology with other crucial kinases, such as the cyclin-dependent protein kinase CDC2, developing compounds that are both potent and selective is challenging. A novel series of derivatives of 5-nitro-N2-(2-(pyridine-2ylamino)ethyl)pyridine-2,6-diamine were synthesized and have been shown to potently inhibit glycogen synthase kinase-3 (GSK3). Potency in the low nanomolar range was obtained along with remarkable selectivity. The compounds activate glycogen synthase in insulin receptor-expressing CHO-IR cells and in primary rat hepatocytes, and have acceptable pharmacokinetics and pharmacodynamics to allow for oral dosing. The X-ray co-crystal structure of human GSK3-beta in complex with compound 2 is reported and provides insights into the structural determinants of the series responsible for its potency and selectivity.
A series of novel, highly potent, selective, and ATP-competitive mammalian target of rapamycin (mTOR) inhibitors based on a benzoxazepine scaffold have been identified. Lead optimization resulted in the discovery of inhibitors with low nanomolar activity and greater than 1000-fold selectivity over the closely related PI3K kinases. Compound 28 (XL388) inhibited cellular phosphorylation of mTOR complex 1 (p-p70S6K, pS6, and p-4E-BP1) and mTOR complex 2 (pAKT (S473)) substrates. Furthermore, this compound displayed good pharmacokinetics and oral exposure in multiple species with moderate bioavailability. Oral administration of compound 28 to athymic nude mice implanted with human tumor xenografts afforded significant and dose-dependent antitumor activity.
Abstract In this paper, we report selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine S N Ar chemistry. Modification of phage-displayed libraries SXCX n C-phage, n = 3–5, where X is any amino acid except for cysteine by decafluoro-diphenylsulfone ( DFS ), yields genetically-encoded library of octafluoro-diphenylsulfone-crosslinked macrocycles ( OFS -SXCX n C-phage). Selection from these libraries using albumin as a bait identified a family of significantly enriched perfluoroaryl-macrocycles. Synthesis of perfluoroaryl-macrocycles predicted by phage display and testing their binding properties by 19 F NMR and fluorescent polarization identified OFS -macrocycle with SICRFFC sequence as the most potent albumin binder. We observed that OFS -macrocycles slowly react with biological nucleophiles such as glutathione. Replacing decafluoro-diphenylsulfone by nearly isosteric pentafluorophenyl sulfide yielded perfluorophenylsulfide ( PFS )-crosslinked macrocycles devoid of undesired reactivity. The augmented lead PFS -macrocycle with SICRFFC sequence exhibited K D = 4–6 µM towards human serum albumin and similar affinities towards rat and mouse albumins. When injected in mouse, the PFS -SICRFFCGGG compound was significantly retained in circulation in vivo when compared to control PFS -macrocyclic peptide. The perfluoroaryl-macrocycles with SICRFFC motif are the smallest known peptide macrocycle with significant affinity for human albumin and they are a productive starting point for future development of compact macrocycles with predictable circulation half-life in vivo .
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence. We replaced DFS with isosteric pentafluorophenyl sulfide (PFS) and the PFS-SICRFFCGG exhibited KD = 4-6 µM towards human serum albumin. When injected in mice, the concentration of the PFS-SICRFFCGG in plasma was indistinguishable from the reference peptide, SA-21. More importantly, a conjugate of PFS-SICRFFCGG and peptide apelin-17 analogue (N3-PEG6-NMe17A2) showed retention in circulation similar to SA-21; in contrast, apelin-17 analogue was cleared from the circulation after 2 min. The PFS-SICRFFC is the smallest known peptide macrocycle with a significant affinity for human albumin and substantial in vivo circulation half-life. It is a productive starting point for future development of compact macrocycles with extended half-life in vivo.