We studied community–environment relationships of lake macrophytes at two metacommunity scales using data from 16 regions across the world. More specifically, we examined (a) whether the lake macrophyte communities respond similar to key local environmental factors, major climate variables and lake spatial locations in each of the regions (i.e., within-region approach) and (b) how well can explained variability in the community–environment relationships across multiple lake macrophyte metacommunities be accounted for by elevation range, spatial extent, latitude, longitude, and age of the oldest lake within each metacommunity (i.e., across-region approach). In the within-region approach, we employed partial redundancy analyses together with variation partitioning to investigate the relative importance of local variables, climate variables, and spatial location on lake macrophytes among the study regions. In the across-region approach, we used adjusted R2 values of the variation partitioning to model the community–environment relationships across multiple metacommunities using linear regression and commonality analysis. We found that niche filtering related to local lake-level environmental conditions was the dominant force structuring macrophytes within metacommunities. However, our results also revealed that elevation range associated with climate (increasing temperature amplitude affecting macrophytes) and spatial location (likely due to dispersal limitation) was important for macrophytes based on the findings of the across-metacommunities analysis. These findings suggest that different determinants influence macrophyte metacommunities within different regions, thus showing context dependency. Moreover, our study emphasized that the use of a single metacommunity scale gives incomplete information on the environmental features explaining variation in macrophyte communities.
The chapter highlights the importance of the concept of “ecological sanitation” (Ecosan) in environmental education. It also describes the implementation and management of the “Ecosan” project in several primary and middle schools and explores the lessons learned from reusing organic waste to promote sustainability in arid communities in the southeastern region of Morocco. The project planned and built Ecosan systems that recycle human wastes in five schools from five oasis villages of the Draa-Tafilalt region. The results suggest that the Ecosan system may be a sustainable option to support water, soil, and biodiversity in the vulnerable arid areas, but the scale-up of the project and adoption by the local communities will require more work and coordination with the government and local stakeholders.
Background: Temporary ponds, an abundant habitat in the Maghreb region and notably in Morocco, have a high conservation value. However, they are mainly known from the north of the country.Aims: The aim of this work was to characterise the vegetation of Moroccan temporary ponds along a combined gradient of latitude and anthropogenic pressure.Methods: Eighty-five ponds distributed along a north–south gradient of 750 km were sampled. For each pond, all vegetation was surveyed (flooded and dry parts) and the local abiotic characteristics were measured during two successive hydrological cycles. The prevailing anthropogenic pressures were also identified and were attributed an impact score.Results: Eighty-one characteristic pond species (including 17 rare species) were recorded, with several new distribution data in the southern part of the latitudinal gradient. Plant communities were related to climatic and anthropogenic factors, but mostly to local factors, such as maximum water depth and soil pH. The northern ponds (wettest macroclimate) were rich in characteristic species and rare species, while the southern (driest macroclimate) ponds were more species poor.Conclusions: In addition to the direct impact of increasing human activity, a further reduction of the floristic richness of temporary ponds is expected due to climatic changes. This is particularly the case for characteristic species which have a high conservation value.
Rumex tunetanus is a strictly endemic species occurring on the banks of the dried lake of Sejenane (NW-Tunisia) which was discovered in 1888 (published in 1899), but never seen until our rediscovery in 2009. This finding allowed us to give a more complete morphological description of the species, as well as to specify its ecological preferences and conservation status. A lectotype preserved at P was designated for the name Rumex tunetanus.