Aging | doi:10.18632/aging.204498. Pedro S. Marra, Takehiko Yamanashi, Kaitlyn J. Crutchley, Nadia E. Wahba, Zoe-Ella M. Anderson, Manisha Modukuri, Gloria Chang, Tammy Tran, Masaaki Iwata, Hyunkeun Ryan Cho, Gen Shinozaki
Abstract We have previously developed a bispectral electroencephalography (BSEEG) device, which was shown to be effective in detecting delirium and predicting patient outcomes. In this study we aimed to apply the BSEEG approach for a sepsis. This was a retrospective cohort study conducted at a single center. Sepsis-positive cases were identified based on retrospective chart review. EEG raw data and calculated BSEEG scores were obtained in the previous studies. The relationship between BSEEG scores and sepsis was analyzed, as well as the relationship among sepsis, BSEEG score, and mortality. Data were analyzed from 628 patients. The BSEEG score from the first encounter (1st BSEEG) showed a significant difference between patients with and without sepsis ( p = 0.0062), although AUC was very small indicating that it is not suitable for detection purpose. Sepsis patients with high BSEEG scores showed the highest mortality, and non-sepsis patients with low BSEEG scores showed the lowest mortality. Mortality of non-sepsis patients with high BSEEG scores was as bad as that of sepsis patients with low BSEEG scores. Even adjusting for age, gender, comorbidity, and sepsis status, BSEEG remained a significant predictor of mortality ( p = 0.008). These data are demonstrating its usefulness as a potential tool for identification of patients at high risk and management of sepsis.
The assessment of initial severity of a disease is arguably one of the most important factors in identifying appropriate therapies. In this paper, we propose an initial severity‐dependent longitudinal model to account for the influence of the initial severity of a disease on the posttreatment severity and the efficacy of medical treatments. The proposed model has the flexibility of nonparametric modeling, as it allows coefficients to vary with the initial severity of the disease. It also provides attractive and practical patient‐specific interpretation of initial severity‐dependent coefficients. As a result, the proposed model enables patient‐specific modeling and treatment recommendations consistent with the assessment of the patient's initial severity, and thus, it can be used as a decision support tool for clinicians. A new empirical likelihood approach is employed for efficient estimation and statistical inference about the initial severity‐dependent coefficients. In contrast to the literature on marginal regression models, the proposed estimation procedure allows nuisance parameters associated with the working correlation matrix and the error variances to vary smoothly with the initial severity. The effectiveness of the proposed procedure is demonstrated via simulation studies. We further apply the proposed method by analyzing a data set arising from a randomized controlled trial of women with depression and discover an interesting phenomenon; antidepressant medication intervention is effective for patients with moderate or severe depression, whereas psychotherapy intervention using manual‐guided cognitive behavior therapy is effective for patients with a severe case of depression.
We examined 2-year longitudinal change in clinical features and biomarkers in LRRK2 non-manifesting carriers (NMCs) versus healthy controls (HCs) enrolled in the Parkinson's Progression Markers Initiative (PPMI). We analyzed 2-year longitudinal data from 176 LRRK2 G2019S NMCs and 185 HCs. All participants were assessed annually with comprehensive motor and non-motor scales, dopamine transporter (DAT) imaging, and biofluid biomarkers. The latter included cerebrospinal fluid (CSF) Abeta, total tau and phospho-tau; serum urate and neurofilament light chain (NfL); and urine bis(monoacylglycerol) phosphate (BMP). At baseline, LRRK2 G2019S NMCs had a mean (SD) age of 62 (7.7) years and were 56% female. 13% had DAT deficit (defined as <65% of age/sex-expected lowest putamen SBR) and 11% had hyposmia (defined as ≤15th percentile for age and sex). Only 5 of 176 LRRK2 NMCs developed PD during follow-up. Although NMCs scored significantly worse on numerous clinical scales at baseline than HCs, there was no longitudinal change in any clinical measures over 2 years or in DAT binding. There were no longitudinal differences in CSF and serum biomarkers between NMCs and HCs. Urinary BMP was significantly elevated in NMCs at all time points but did not change longitudinally. Neither baseline biofluid biomarkers nor the presence of DAT deficit correlated with 2-year change in clinical outcomes. We observed no significant 2-year longitudinal change in clinical or biomarker measures in LRRK2 G2019S NMCs in this large, well-characterized cohort even in the participants with baseline DAT deficit. These findings highlight the essential need for further enrichment biomarker discovery in addition to DAT deficit and longer follow-up to enable the selection of NMCs at the highest risk for conversion to enable future prevention clinical trials.
ABSTRACT In medical research, the accuracy of data from electronic medical records (EMRs) is critical, particularly when analyzing dense functional data, where anomalies can severely compromise research integrity. Anomalies in EMRs often arise from human errors in data measurement and entry, and increase in frequency with the volume of data. Despite the established methods in computer science, anomaly detection in medical applications remains underdeveloped. We address this deficiency by introducing a novel tool for identifying and correcting anomalies specifically in dense functional EMR data. Our approach utilizes studentized residuals from a mean‐shift model, and therefore assumes that the data adheres to a smooth functional trajectory. Additionally, our method is tailored to be conservative, focusing on anomalies that signify actual errors in the data collection process while controlling for false discovery rates and type II errors. To support widespread implementation, we provide a comprehensive R package, ensuring that our methods can be applied in diverse settings. Our methodology's efficacy has been validated through rigorous simulation studies and real‐world applications, confirming its ability to accurately identify and correct errors, thus enhancing the reliability and quality of medical data analysis.
Little is known about the impact of the dopamine system on development of cognitive impairment (CI) in Parkinson disease (PD).We used data from a multi-site, international, prospective cohort study to explore the impact of dopamine system-related biomarkers on CI in PD.PD participants were assessed annually from disease onset out to 7 years, and CI determined by applying cut-offs to four measures: (1) Montreal Cognitive Assessment; (2) detailed neuropsychological test battery; (3) Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) cognition score; and (4) site investigator diagnosis of CI (mild cognitive impairment or dementia). The dopamine system was assessed by serial Iodine-123 Ioflupane dopamine transporter (DAT) imaging, genotyping, and levodopa equivalent daily dose (LEDD) recorded at each assessment. Multivariate longitudinal analyses, with adjustment for multiple comparisons, determined the association between dopamine system-related biomarkers and CI, including persistent impairment.Demographic and clinical variables associated with CI were higher age, male sex, lower education, non-White race, higher depression and anxiety scores and higher MDS-UPDRS motor score. For the dopamine system, lower baseline mean striatum dopamine transporter values (P range 0.003-0.005) and higher LEDD over time (P range <0.001-0.01) were significantly associated with increased risk for CI.Our results provide preliminary evidence that alterations in the dopamine system predict development of clinically-relevant, cognitive impairment in Parkinson's disease. If replicated and determined to be causative, they demonstrate that the dopamine system is instrumental to cognitive health status throughout the disease course.Parkinson's Progression Markers Initiative is registered with ClinicalTrials.gov (NCT01141023).
Investigation of sex-related motor and non-motor differences and biological markers in Parkinson's disease (PD) may improve precision medicine approach.
Most of the animal studies using inflammation-induced cognitive change have relied on behavioral testing without objective and biologically solid methods to quantify the severity of cognitive disturbances. We have developed a bispectral EEG (BSEEG) method using a novel algorithm in clinical study. This method effectively differentiates between patients with and without delirium, and predict long-term mortality. In the present study, we aimed to apply our bispectral EEG (BSEEG) method, which can detect patients with delirium, to a mouse model of delirium with systemic inflammation induced by lipopolysaccharides (LPS) injection. We recorded EEG after LPS injection using wildtype early adulthood mice (2~3-month-old) and aged mice (18-19-month-old). Animal EEG recordings were converted for power spectral density to calculate BSEEG score using the similar BSEEG algorithm previously developed for our human study. The BSEEG score was relatively stable and slightly high during the day. Alternatively, the BSEEG score was erratic and low in average during the night. LPS injection increased the BSEEG score dose-dependently and diminished the diurnal changes. The mean BSEEG score increased much more in the aged mice group as dosage increased. Our results suggest that BSEEG method can objectively "quantify" level of neuro-Inflammation induced by systemic inflammation (LPS), and that this BSEEG method can be useful as a model of delirium in mice.