The use of multiphase electric drives in industrial applications has increased in the last few years. These machines’ advantages over the three-phase system make them appropriate for harsh working situations. To increase their inherent reliability, some authors have been working in sensorless control schemes, where the absence of an encoder ensures proper system performance. Nevertheless, these sensorless control systems present some problems due to the uncertainties of the parameters. In this regard, using extended Kalman filters overcomes this situation, since Kalman filters consider the system error and measurement error in the estimation process. However, when the three-phase Kalman filters are extended to the five-phase case of study, the complexity of the problem increases substantially. In this work, the authors propose an extended Kalman filter, which discomposes the original state equation, reducing the complexity of the estimation stage. In addition, the system suppresses the third-harmonic injection, which enhances the overall phase-current quality.
Five-phase induction motors have the characteristics of high torque density, low torque ripple, and flexible control, making them suitable for medium- and low-voltage power supply situations. However, with the expansion of application scenarios, five-phase motors need to cope with increasingly complex operating conditions. Five-phase motors for propeller propulsion will face various complex sea conditions during actual use, and five-phase motors for electric vehicles will also face various complex road conditions and operating requirements during use. Therefore, as a propulsion motor, its speed control system must have strong robustness and anti-disturbance performance. The use of traditional PI algorithms has problems, such as poor adaptability and inability to adapt to various complex working conditions, but the use of an active disturbance rejection controller (ADRC) can effectively solve these problems. However, due to the significant coupling between the variables of induction motors and the large number of parameters in the ADRC, tuning the parameters of the ADRC is complex. Traditional empirical tuning methods can only obtain a rough range of parameter values and may have significant errors. Therefore, this paper uses ADRC based on genetic algorithm(GAADRC) to tune the parameters of the control and design an objective function based on multi-objective optimization. The parameters to be adjusted were obtained through multiple iterations. The simulation and experimental results indicate that GAADRC has lower startup overshoot, faster adjustment time, and lower load/unload speed changes compared to the empirically tuned PI controller and ADRC. Meanwhile, using a genetic algorithm for motor ADRC parameter tuning can obtain optimal control parameters while the control parameter range is completely uncertain; therefore, the method proposed in this paper has strong practical value.
Five-phase induction motors have the advantages of high reliability and strong fault-tolerant performance, so it’s open circuit fault model and fault-tolerant control strategy are widely studied. Based on the normal operation of the five-phase induction motor, the mathematical model of the five-phase induction motor under the conditions of single-phase open circuits, adjacent two-phase open circuits, and non-adjacent two-phase open circuits are established by using the reduced order decoupling transformation. Based on the principle of constant magnetic potential, the relationship between magnetic potential and each phase current is analyzed by using the symmetrical component method (MSC). The fault-tolerant control strategy of a five-phase induction motor with the above three open-circuit faults is designed. Through simulation and prototype experiments, the phase current and speed conversion under three open-circuit faults are analyzed. The results show that after the open-circuit fault of a five-phase motor, the residual phase current is no longer balanced, the motor speed is decreased, and the vibration is increased significantly. After fault-tolerant control, the residual phase current is balanced, the rated speed can be reached, and the vibration of the motor is reduced. Thus, the validity and correctness of the fault-tolerant control strategy for a five-phase induction motor are verified.