Ischaemia/reperfusion (I/R) injury is commonly seen in the field of intestine surgical interventions, shock, trauma, and many other clinical conditions. Simvastatin is known to have antioxidant and anti-inflammatory properties. This study investigated the effect of simvastatin administration in a warm intestinal I/R model on TNF-alpha, antioxidant enzymes and intestinal tissue morphology. Thirty-six male wistar rats underwent laparotomy under general anaesthesia. Simvastatin was administered from four days before ischaemia induction. The rats were divided in to three groups (n = 12): the sham group, the I/R group, and the I/R + simvastatin group. Intestinal ischaemia was induced by superior mesenteric artery ligation with microvascular clamps for 60 minutes, and after ischaemia, blood perfusion was released into the tissue and a reperfusion phase was started, which lasted for 3 hours. After 3 hours, the animals were sacrificed and serum and tissue obtained for biochemical and histological study. In the simvastatin treated group, intestinal tissue injury, TNF-alpha level, and tissue malondealdehyde levels were significantly lower than in the I/R group (p < 0.05). Glutathion peroxidase and superoxide dismutase levels were significantly higher in the simvastatin treated group than in the I/R group (p < 0.05). Simvastatin pretreatment reduced intestinal I/R injury and was associated with down- -regulation of serum TNF-alpha and tissue malondealdehyde level, and simvastatin administration maintained cellular antioxidant enzyme contents compared to the I/R group after 3 hours reperfusion time.
<b><i>Objective:</i></b> To study the effect of erythropoietin (EPO) treatment on renal and lung injury following renal ischemia/reperfusion (I/R). <b><i>Materials and Methods:</i></b> Thirty male Wistar rats were assigned to three groups of 10 rats each. The first group was sham-operated, the second was subjected to renal I/R (30 min of ischemia followed by 24 h of reperfusion). The third group was subjected to renal I/R and treated with EPO in two doses: the first dose 1 h prior to ischemia (1,000 U/kg) and the second dose 6 h after ischemia (1,000 U/kg). <b><i>Results:</i></b> The renal and lung tissue injury index, tissue serum blood urea nitrogen and creatinine (Cr) were higher in the renal I/R group compared to the renal I/R + EPO group; the difference was statistically significant (p < 0.05). Kidney and lung tissue glutathione peroxidase and superoxide dismutase levels were higher in the renal I/R + EPO group than the renal I/R group; the difference was also statistically significant (p < 0.05). <b><i>Conclusion:</i></b> The data showed that EPO pretreatment could be effective in reducing renal and lung injury following renal I/R and could improve the cellular antioxidant defense system. Hence EPO pretreatment may be effective for attenuating renal and lung injury after renal I/R-induced injury during surgical procedures, hypotension, renal transplantation and other conditions inducing renal I/R.