We present V and R photometry of the gravitationally lensed quasars WFI2033-4723 and HE0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Differential photometry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. The quasar WFI2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of $\Delta t= 7.6\pm1.8$ days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI2033-4723 and HE0047-1756 become bluer when brighter, which is consistent with previous studies.
Accurate measurements of the physical characteristics of a large number of exoplanets are useful to strongly constrain theoretical models of planet formation and evolution, which lead to the large variety of exoplanets and planetary-system configurations that have been observed. We present a study of the planetary systems WASP-45 and WASP-46, both composed of a main-sequence star and a close-in hot Jupiter, based on 29 new high-quality light curves of transits events. In particular, one transit of WASP-45 b and four of WASP-46 b were simultaneously observed in four optical filters, while one transit of WASP-46 b was observed with the NTT obtaining precision of 0.30 mmag with a cadence of roughly three minutes. We also obtained five new spectra of WASP-45 with the FEROS spectrograph. We improved by a factor of four the measurement of the radius of the planet WASP-45 b, and found that WASP-46 b is slightly less massive and smaller than previously reported. Both planets now have a more accurate measurement of the density (0.959 +\- 0.077 \rho Jup instead of 0.64 +\- 0.30 \rho Jup for WASP-45 b, and 1.103 +\- 0.052 \rho Jup instead of 0.94 +\- 0.11 \rho Jup for WASP-46 b). We tentatively detected radius variations with wavelength for both planets, in particular in the case of WASP-45 b we found a slightly larger absorption in the redder bands than in the bluer ones. No hints for the presence of an additional planetary companion in the two systems were found either from the photometric or radial velocity measurements.
We analyse 20 nights of CCD observations in the V and I bands of the globular cluster M68 (NGC 4590), using these to detect variable objects. We also obtained electron-multiplying CCD (EMCCD) observations for this cluster in order to explore its core with unprecedented spatial resolution from the ground. We reduced our data using difference image analysis, in order to achieve the best possible photometry in the crowded field of the cluster. In doing so, we showed that when dealing with identical networked telescopes, a reference image from any telescope may be used to reduce data from any other telescope, which facilitates the analysis significantly. We then used our light curves to estimate the properties of the RR Lyrae (RRL) stars in M68 through Fourier decomposition and empirical relations. The variable star properties then allowed us to derive the cluster's metallicity and distance. We determine new periods for the variable stars, and search for new variables, especially in the core of the cluster where our method performs particularly well. We detect an additional 4 SX Phe stars, and confirm the variability of another star, bringing the total number of confirmed variable stars in this cluster to 50. We also used archival data stretching back to 1951 in order to derive period changes for some of the single-mode RRL stars, and analyse the significant number of double-mode RRL stars in M68. Furthermore, we find evidence for double-mode pulsation in one of the SX Phe stars in this cluster. Using the different types of variables, we derived an estimate of the metallicity, [Fe/H]=$-2.07 \pm 0.06$ on the ZW scale, and 4 independent estimates of the distance modulus ($\mu_0 \sim$ 15.00 mag) for this cluster. Thanks to the first use of difference image analysis on time-series observations of M68, we are now confident that we have a complete census of the RRL stars in this cluster.
Two previously unknown variable stars in the crowded central region of the globular cluster NGC 6981 are presented. The observations were made using the Electron Multiplying CCD (EMCCD) camera at the Danish 1.54m Telescope at La Silla, Chile.The two variables were not previously detected by conventional CCD imaging because of their proximity to a bright star. This discovery demonstrates that EMCCDs are a powerful tool for performing high-precision time-series photometry in crowded fields and near bright stars, especially when combined with difference image analysis (DIA).
Stellar variability induce by starspots can hamper the detection of exoplanets and bias planet property estimations. These features can also be used to study star-planet interactions as well as inferring properties from the underlying stellar dynamo. However, typical techniques, such as ZDI, are not possible for most host-stars. We present a robust method based on spot modelling to map the surface of active star allowing us to statistically study the effects and interactions of stellar magnetism with transiting exoplanets. The method is applied to the active Kepler-9 star where we find small evidence for a possible interaction between planet and stellar magnetosphere which leads to a 2:1 resonance between the spot rotation and orbital period.