An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Hypothesis: Poloxamines are amphiphilic block copolymers that self-assemble forming polymeric micelles (PMs) and hydrogels. They have emerged as promising colloidal carriers for their potential in improving drug delivery and controlled release through their multi-responsive properties. Tetronic® 1307 (T1307) PMs and gels have been used herein to incorporate host–guest complexes of cyclodextrins (CDs) and miltefosine (MF), an amphiphilic, anti-parasitic drug effective against leishmaniasis. Experiments: The association of MF to αCD, βCD, and HPβCD and the topology of the complexes have been fully characterized by NMR spectroscopy. Then, the structure of the complex-loaded PMs and hydrogels investigated using diffusion nuclear magnetic resonance (DOSY), small angle neutron scattering (SANS), and dynamic light scattering (DLS). The antileishmanial activity of the constructs was evaluated against Leishmania major promastigotes and amastigotes, as well as their cytotoxicity in macrophages. Findings: All the CDs form highly stable inclusion complexes with MF in a 2CD:1MF stoichiometry that allow the existence of considerable proportions of complexed drug at high dilution, the HPβCD providing the highest stability and compatibility with the poloxamine. The complex incorporates preferentially into the hydrophilic shell of the PMs, inducing the elongation of the aggregates and the dehydration of the micellar core, formed mainly by the PPO blocks. At high concentrations and physiological temperature, the complex-loaded PMs pack in a BCC-type paracrystal network. The micellar formulations of the CD-complexed MF reduced the cytotoxicity of the drug, while improving its antileishmanial activity. This approach would improve the treatment, facilitating the administration of MF at lower concentrations and achieving relevant therapeutic effects, not only through the intravenous route, but also by topical formulations as injectable thermogels for the cure of cutaneous and mucocutaneous forms of the disease.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
A hungry bear is trying to catch some slippery fish from a river; this resembles the feeling of bioorganic chemists attempting the synthesis of very reactive, elusive compounds such as the cyclic dehydroalanine derivatives (4-methylenoxazol-5(4H)-ones). Non-destructive detection techniques such as NMR spectroscopy (the fishing net) allowed us (the bear) to monitor the very fast formation and consumption of dehydroalanines (the fish) in the reaction mixture (the river) and to combine them with other chemicals such as diazocompounds and dienes (the fruits and flowers). Finally, the bear managed to cook a good dehydroalanine fish meal! Artwork by N.M. More information can be found in the communication by G. Jiménez-Osés et al. on page 1246 in Issue 10, 2019 (DOI: 10.1002/cbic.201800758).
The use of vaccines based on MUC1 glycopeptides is a promising approach to treat cancer. We present herein several sulfa-Tn antigens incorporated in MUC1 sequences that possess a variable linker between the carbohydrate (GalNAc) and the peptide backbone. The main conformations of these molecules in solution have been evaluated by combining NMR experiments and molecular dynamics simulations. The linker plays a key role in the modulation of the conformation of these compounds at different levels, blocking a direct contact between the sugar moiety and the backbone, promoting a helix-like conformation for the glycosylated residue and favoring the proper presentation of the sugar unit for molecular recognition events. The feasibility of these novel compounds as mimics of MUC1 antigens has been validated by the X-ray diffraction structure of one of these unnatural derivatives complexed to an anti-MUC1 monoclonal antibody. These features, together with potential lack of immune suppression, render these unnatural glycopeptides promising candidates for designing alternative therapeutic vaccines against cancer.
This work reports the synthesis and characterization by Fourier transform infrared spectroscopy (FTIR), 1H, 13C, and 79Se nuclear magnetic resonance (NMR), mass spectrometry, and elemental analysis techniques as well as the in vitro evaluation of the leishmanicidal activity of 13 new selenophosphoramidate derivatives. Among the new compounds, four of them (compounds 1f, 1g, 2f, and 2g), which exhibited the best profiles, were tested against infected macrophages and were selected for further studies related to their leishmanicidal mechanism. In this regard, trypanothione redox system alteration was determined. Compound 1g, under similar conditions, was more effective than the corresponding references. In addition, theoretical calculations showed that this compound also presents most physicochemical and pharmacokinetic properties within the ranges expected for orally available drugs. It is believed that selenophosphoramidate functionalities may represent a scaffold to be explored toward the development of new agents for leishmania treatment.