Metabolic and morphological adaptations of the intestine have been suggested to play a role in the various therapeutic benefits of Roux-en-Y Gastric Bypass (RYGB) surgery. However, the precise underlying mechanisms remain unclear. In this study, the effects of physical properties of ingested food and redirection of biliopancreatic secretions on intestinal remodeling were investigated in RYGB operated rats.
The current understanding of the safety of heart transplantation from COVID-19+ donors is uncertain. Preliminary studies suggest that heart transplants from these donors may be feasible. We analyzed 1-year outcomes in COVID-19+ donor heart recipients using 1:3 propensity matching. The OPTN database was queried for adult heart transplant recipients between 1 January 2020 and 30 September 2022. COVID-19+ donors were defined as those who tested positive on NATs or antigen tests within 21 days prior to procurement. Multiorgan transplants, retransplants, donors without COVID-19 testing, and recipients allocated under the old heart allocation system were excluded. A total of 7211 heart transplant recipients met the inclusion criteria, including 316 COVID-19+ donor heart recipients. Further, 290 COVID-19+ donor heart recipients were matched to 870 COVID-19- donor heart recipients. Survival was similar between the groups at 30 days (
Background. The number of patients waiting for heart transplant far exceeds the number of hearts available. Donation after circulatory death (DCD) combined with machine perfusion can increase the number of transplantable hearts by as much as 48%. Emerging studies also suggest machine perfusion could enable allograft “reconditioning” to optimize outcomes. However, a detailed understanding of the energetic substrates and metabolic changes during perfusion is lacking. Methods. Metabolites were analyzed using 1-dimensional 1 H and 2-dimensional 13 C- 1 H heteronuclear spectrum quantum correlation nuclear magnetic resonance spectroscopy on serial perfusate samples (N = 98) from 32 DCD hearts that were successfully transplanted. Wilcoxon signed-rank and Kruskal-Wallis tests were used to test for significant differences in metabolite resonances during perfusion and network analysis was used to uncover altered metabolic pathways. Results. Metabolite differences were observed comparing baseline perfusate to samples from hearts at time points 1–2, 3–4, and 5–6 h of perfusion and all pairwise combinations. Among the most significant changes observed were a steady decrease in fatty acids and succinate and an increase in amino acids, especially alanine, glutamine, and glycine. This core set of metabolites was also altered in a DCD porcine model perfused with a nonblood-based perfusate. Conclusions. Temporal metabolic changes were identified during ex vivo perfusion of DCD hearts. Fatty acids, which are normally the predominant myocardial energy source, are rapidly depleted, while amino acids such as alanine, glutamine, and glycine increase. We also noted depletion of ketone, β-hydroxybutyric acid, which is known to have cardioprotective properties. Collectively, these results suggest a shift in energy substrates and provide a basis to design optimal preservation techniques during perfusion.
Roux-en-Y gastric bypass (RYGB) surgery potently improves obesity and a myriad of obesity-associated co-morbidities including type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Time-series omics data are increasingly being utilized to provide insight into the mechanistic underpinnings that correspond to metabolic adaptations in RYGB. However, the conventional computational biology methods used to interpret these temporal multi-dimensional datasets have been generally limited to pathway enrichment analysis (PEA) of isolated pair-wise comparisons based on either experimental condition or time point, neither of which adequately capture responses to perturbations that span multiple time scales. To address this, we have developed a novel graph network-based analysis workflow designed to identify modules enriched with biomolecules that share common dynamic profiles, where the network is constructed from all known biological interactions available through the Kyoto Encyclopedia of Genes and Genomes (KEGG) resource. This methodology was applied to time-series RNAseq transcriptomics data collected on rodent liver samples following RYGB, and those of sham-operated and weight-matched control groups, to elucidate the molecular pathways involved in the improvement of as NAFLD. We report several network modules exhibiting a statistically significant enrichment of genes whose expression trends capture acute-phase as well as long term physiological responses to RYGB in a single analysis. Of note, we found the HIF1 and P53 signaling cascades to be associated with the immediate and the long-term response to RYGB, respectively. The discovery of less intuitive network modules that may have gone overlooked with conventional PEA techniques provides a framework for identifying novel drug targets for NAFLD and other metabolic syndrome co-morbidities.
Ex vivo machine perfusion or normothermic machine perfusion is a preservation method that has gained great importance in the transplantation field. Despite the immense opportunity for assessment due to the beating state of the heart, current clinical practice depends on limited metabolic trends for graft evaluation. Hemodynamic measurements obtained from left ventricular loading have garnered significant attention within the field due to their potential as objective assessment parameters. In effect, this protocol provides an easy and effective manner of incorporating loading capabilities to established Langendorff perfusion systems through the simple addition of an extra reservoir. Furthermore, it demonstrates the feasibility of employing passive left atrial pressurization for loading, an approach that, to our knowledge, has not been previously demonstrated. This approach is complemented by a passive Windkessel base afterload, which acts as a compliance chamber to maximize myocardial perfusion during diastole. Lastly, it highlights the capability of capturing functional metrics during cardiac loading, including left ventricular pulse pressure, contractility, and relaxation, to uncover deficiencies in cardiac graft function after extended periods of preservation times (˃6 h).