Different content of aluminum powder was mixed into natural rubber. Aluminum powder was modified by different coupling agents via wet method, and the modified aluminum filler/NR composite was prepared. The mechanical properties, thermal conductivity and thermogravimetric analysis of the composites was investigated. The results showed that the best physical properties and thermal conductivity of composites were achieved with saline coupling agent Si-69, and Thermo decomposing temperature of 3%TM-38S matching composites improved evidently. SEM test indicated that boundary surface of aluminium fillers and rubber was obviously improved when aluminum powder was modified by coupling agent, which would result in preferable mechanical property. The result of Thermogravimetric analysis showed that after aluminum powder filler was modified by three coupling agents, thermo decomposing temperature and hot lost weight of composites rose obviously. With the increase of Al powder content the thermal conductivity improved greatly, Thermal conductivity of Al/NR composites lay between 0.25 and 0.47 W·m -1 ·K -1 .
Additive manufacturing (AM) offers customization of the microstructures and mechanical properties of fabricated components according to the material selected and process parameters applied. Selective laser melting (SLM) is a commonly-used technique for processing high strength aluminum alloys. The selection of SLM process parameters could control the microstructure of parts and their mechanical properties. However, the process parameters limit and defects obtained inside the as-built parts present obstacles to customized part production. This study investigates the influence of SLM process parameters on the quality of as-built Al6061 and AlSi10Mg parts according to the mutual connection between the microstructure characteristics and mechanical properties. The microstructure of both materials was characterized for different parts processed over a wide range of SLM process parameters. The optimized SLM parameters were investigated to eliminate internal microstructure defects. The behavior of the mechanical properties of parts was presented through regression models generated from the design of experiment (DOE) analysis for the results of hardness, ultimate tensile strength, and yield strength. A comparison between the results obtained and those reported in the literature is presented to illustrate the influence of process parameters, build environment, and powder characteristics on the quality of parts produced. The results obtained from this study could help to customize the part's quality by satisfying their design requirements in addition to reducing as-built defects which, in turn, would reduce the amount of the post-processing needed.
Additive manufacturing (AM) of high-strength Al alloys promises to enhance the performance of critical components related to various aerospace and automotive applications. The key advantage of AM is its ability to generate lightweight, robust, and complex shapes. However, the characteristics of the as-built parts may represent an obstacle to the satisfaction of the parts’ quality requirements. The current study investigates the influence of selective laser melting (SLM) process parameters on the quality of parts fabricated from different Al alloys. A design of experiment (DOE) was used to analyze relative density, porosity, surface roughness, and dimensional accuracy according to the interaction effect between the SLM process parameters. The results show a range of energy densities and SLM process parameters for AlSi10Mg and Al6061 alloys needed to achieve “optimum” values for each performance characteristic. A process map was developed for each material by combining the optimized range of SLM process parameters for each characteristic to ensure good quality of the as-built parts. This study is also aimed at reducing the amount of post-processing needed according to the optimal processing window detected.
Additive manufacturing (AM) of high strength Al alloys promises to enhance the performance of critical components related to various aerospace and automotive applications. The key advantage of AM is its ability to generate lightweight, robust, and complex shapes. However, the characteristics of the as-built parts may represent an obstacle to satisfy the part quality requirements. The current study investigates the influence of selective laser melting (SLM) process parameters on the quality of parts fabricated from different Al alloys. A design of experiment (DOE) is used to analyze relative density, porosity, surface roughness, and dimensional accuracy according to the interaction effect between the SLM process parameters. The results show a range of energy densities and SLM process parameters for the AlSi10Mg and Al6061 alloys needed to achieve “optimum” values for each performance characteristic. A process map is developed for each material by combining the optimized range of SLM process parameters for each characteristic to ensure good quality of the as-built parts. The second part of this study investigates the effect of SLM process parameters on the microstructure and mechanical properties of the same Al alloys. This comprehensive study is also aimed at reducing the amount of post-processing needed.
The article expound a scheme of manu facturing a new style disk -casting -machine in detail in accodance with many kinds of existing machine d uring application.By apply stud -gear structure as its transmission dev ice instead of grooved pulley,the new style machine works steadily,accurate and produces high -grade anode -board.The mcthod is a milestone of disk -casting -machine structure techinics,and it can be applied to other disk -casting machinery with a good economic effec t.
Additive manufacturing (AM) provides customization of the microstructure and mechanical properties of components. Selective laser melting (SLM) is the commonly used technique for processing high strength Aluminum alloys. Selection of SLM process parameters could control the microstructure of fabricated parts and their mechanical properties. However, process parameter limits and defects inside the as-built parts present obstacles to customized part production. This study is the second part of a comprehensive work that investigates the influence of SLM process parameters on the quality of as-built Al6061 and AlSi10Mg parts. The microstructure of both materials was characterized for different parts processed over a wide range of SLM process parameters. The optimized SLM parameters were investigated to eliminate the internal microstructure defects. Mechanical properties of the parts were illustrated by regression models generated with design of experiment (DOE) analysis. The results reported in this study were compared to previous studies, illustrating how the process parameters and powder characteristics could affect the quality of produced parts.
Additive manufacturing (AM) offers customization of microstructure and mechanical properties of fabricated components according to the material selected, and process parameters applied. Selective laser melting (SLM) is the commonly used technique for processing high strength aluminum alloys. Selection of SLM process parameters could control the microstructure of parts and their mechanical properties. However, the process parameters limit and defects obtained inside the as-built parts present obstacles to customized part production. This study investigates the influence of SLM process parameters on the quality of as-built Al6061 and AlSi10Mg parts according to the mutual connection between the microstructure characteristics and mechanical properties. The microstructure of both materials was characterized for different parts processed over a wide range of SLM process parameters. The optimized SLM parameters were investigated to eliminate the internal microstructure defects. The behaviour of mechanical properties of parts was presented through regression models generated from the design of experiment (DOE) analysis for the results of hardness, ultimate tensile strength, and yield strength. A comparison between the results obtained and that reported in the literature is presented to illustrate the influence of process parameters, build environment, and powder characteristics on the quality of parts produced. The results obtained from this study could help to customize the part’s quality by satisfying their design requirements in addition to reducing the as-built defects which in turn reduce the amount of the post-processing needed.
An aerostatic mechanical dry gas seal is described in this paper. The seal has shallow depression grooves (compensators) on the back and annular grooves on one of the working faces. With the help of the back depression grooves, a hydrostatic pressure and thereby a separating force with satisfactory stiffness are produced within the sealing gap. A model which takes surface roughness into account was used to predict the performance of the seal. Relationships between the control parameters (the recess position, r G , the nominal film thickness, h 0 , the depth, h v , of depression grooves and the surface roughness parameter, a) are investigated against various pressure ratios, p e / p i . The analysis provides a simple optimum design procedure. A finite element analysis was carried out to account for the effect of face deformation during operation of the seal. Experiments for various speeds, pressures and roughness parameters were carried out and the results from the experiments were used to validate the analysis performed. Analysis and experiment revealed the importance of the surface roughness and deformation of the faces for the creation and retention of the gap.