Introduction Congenital myopathies (CM) often affect contractile proteins of the sarcomere, which could render patients susceptible to exercise-induced muscle damage. We investigated if exercise is safe and beneficial in patients with CM. Methods Patients exercised on a stationary bike for 30 minutes, three times weekly, for 10 weeks at 70% of their maximal oxygen uptake (VO2max). Creatine kinase (CK) was monitored as a marker of muscle damage. VO2max, functional tests, and questionnaires evaluated efficacy. Results Sixteen patients with CM were included in a controlled study. VO2max increased by 14% (range, 6–25%; 95% CI 7–20; p < 0.001) in the seven patients who completed training, and tended to decrease in a non-intervention group (n = 7; change -3.5%; range, -11–3%, p = 0.083). CK levels were normal and remained stable during training. Baseline Fatigue Severity Scale scores were high, 4.9 (SE 1.9), and tended to decrease (to 4.4 (SE 1.7); p = 0.08) with training. Nine patients dropped out of the training program. Fatigue was the major single reason. Conclusions Ten weeks of endurance training is safe and improves fitness in patients with congenital myopathies. The training did not cause sarcomeric injury, even though sarcomeric function is affected by the genetic abnormalities in most patients with CM. Severe fatigue, which characterizes patients with CM, is a limiting factor for initiating training in CM, but tends to improve in those who train. Trial Registration The Regional Committee on Health Research Ethics of the Capital Region of Denmark H-2-2013-066 and ClinicalTrials.gov H2-2013-066
Phosphoglucomutase type 1 (PGM1) deficiency is a rare metabolic myopathy in which symptoms are provoked by exercise.Because the metabolic block is proximal to the entry of glucose into the glycolytic pathway, we hypothesized that iv glucose could improve the exercise intolerance experienced by the patient.This was an experimental intervention study.The study was conducted in an exercise laboratory.Subjects were a 37-year-old man with genetically and biochemically verified PGM1 deficiency and 6 healthy subjects.Cycle ergometer, peak and submaximal exercise (70% of peak oxygen consumption), and exercise with an iv glucose infusion tests were performed.Peak work capacity and substrate metabolism during submaximal exercise with and without an iv glucose infusion were measured.Peak work capacity in the patient was normal, as were increases in plasma lactate during peak and submaximal exercise. However, the heart rate decreased 11 beats minute⁻¹, the peak work rate increased 12.5%, and exercise was rated as being easier with glucose infusion in the patient. These results were in contrast to those in the control group, in whom no improvements occurred. In addition, the patient tended to become hypoglycemic during submaximal exercise.This report characterizes PGM1 deficiency as a mild metabolic myopathy that has dynamic exercise-related symptoms in common with McArdle disease but no second wind phenomenon, thus suggesting that the condition clinically resembles other partial enzymatic defects of glycolysis. However, with glucose infusion, the heart rate decreased 11 beats min⁻¹, the peak work rate increased 12.5%, and exercise was considered easier by the patient.
In this study we investigated the effect of 12 weeks of cycle ergometer training in patients with spinal muscular atrophy type III (SMA III), a hereditary motor neuron disease with progressive muscle weakness and atrophy.Six SMA III patients and 9 healthy subjects completed a 12-week training program, performing 42 30-minute sessions exercising at 65-70% of maximal oxygen uptake (VO2max ). VO2max , muscle strength, functional tests, and self-reported activities of daily living were assessed before and after the training.Training induced a 27 ± 3% increase in VO2max (17 ± 2 to 21 ± 2 ml/kg/min, P < 0.001) in patients. However, fatigue was a major complaint and caused 1 patient to drop out, increased the need for sleep in 3 patients, and led to training modifications in 2 patients.Cycle exercise improves VO2max in SMA III without causing muscle damage, but it also induces significant fatigue. This warrants study into alternative training methods to improve exercise capacity in SMA III patients.
Primary carnitine deficiency (PCD) is an inborn error of fatty acid metabolism. Patients with PCD are risk for sudden heart failure upon fasting or illness if they are not treated with daily l-carnitine. To investigate energy metabolism during exercise in patients with PCD with and without l-carnitine treatment. Interventional study. Hospital exercise laboratories and department of cardiology. Eight adults with PCD who were homozygous for the c.95A>G (p.N32S) mutation and 10 healthy age- and sex-matched controls. Four-day pause in l-carnitine treatment. Total fatty acid and palmitate oxidation rates during 1-hour submaximal cycle ergometer exercise assessed with stable isotope method (U13C-palmitate and 2H2-d-glucose) and indirect calorimetry with and without l-carnitine. Total fatty acid oxidation rate was higher in patients with l-carnitine treatment during exercise than without treatment [12.3 (SD, 3.7) vs 8.5 (SD, 4.6) µmol × kg−1 × min−1; P = 0.008]. However, the fatty acid oxidation rate was still lower in patients treated with l-carnitine than in the healthy controls [29.5 (SD, 10.1) µmol × kg−1 × min−1; P < 0.001] and in the l-carnitine group without treatment it was less than one third of that in the healthy controls (P < 0.001). In line with this, the palmitate oxidation rates during exercise were lower in the no-treatment period [144 (SD, 66) µmol × kg−1 × min−1] than during treatment [204 (SD, 84) µmol × kg−1 × min−1; P = 0.004) . The results indicate that patients with PCD have limited fat oxidation during exercise. l-Carnitine treatment in asymptomatic patients with PCD may not only prevent cardiac complications but also boost skeletal muscle fat metabolism during exercise.
Glycogen storage disease type IIIa (GSDIIIa) is classically regarded as a glycogenosis with fixed weakness, but we hypothesized that exercise intolerance in GSDIIIa is related to muscle energy failure and that oral fructose ingestion could improve exercise tolerance in this metabolic myopathy.We challenged metabolism with cycle-ergometer exercise and measured substrate turnover and oxidation rates using stable isotope methodology and indirect calorimetry in 3 patients and 6 age-matched controls on 1 day, and examined the effect of fructose ingestion on exercise tolerance in the patients on another day.Total fatty acid oxidation rates during exercise were higher in patients than controls, 32.1 (SE 1.2) vs 20.7 (SE 0.5; range 15.8-29.3) μmol/kg/min (p = 0.048), and oxidation of carbohydrates was lower in patients, 1.0 (SE 5.4) vs 38.4 (SE 8.0; range 23.0-77.1) μmol/kg/min (p = 0.024). Fructose ingestion improved exercise tolerance in the patients.Similar to patients with McArdle disease, in whom muscle glycogenolysis is also impaired, GSDIIIa is associated with a reduced skeletal muscle oxidation of carbohydrates and a compensatory increase in fatty acid oxidation, and fructose ingestion improves exercise tolerance. Our results indicate that GSDIIIa should not only be viewed as a glycogenosis with fixed skeletal muscle weakness, but should also be considered among the glycogenoses presenting with exercise-related dynamic symptoms caused by muscular energy deficiency.This study provides Class IV evidence that ingestion of fructose improves exercise tolerance in patients with GSDIIIa.
We investigated the in vivo skeletal muscle metabolism in patients with multiple acyl-CoA dehydrogenase deficiency (MADD) during exercise, and the effect of a glucose infusion. Two adults with MADD on riboflavin and l-carnitine treatment and 10 healthy controls performed an incremental exercise test measuring maximal oxidative capacity (VO2max) and a submaximal exercise test (≤1 hour) on a cycle ergometer. During submaximal exercise, we studied fat and carbohydrate oxidation, using stable isotope tracer methodology and indirect calorimetry. On another day, the patients repeated the submaximal exercise receiving a 10% glucose infusion. The patients had a lower VO2max than controls and stopped the submaximal exercise test at 51 and 58 minutes due to muscle pain and exhaustion. The exercise-induced increase in total fatty acid oxidation was blunted in the patients (7.1 and 1.1 vs 12 ± 4 μmol × kg-1 × min-1 in the healthy controls), but total carbohydrate oxidation was higher (67 and 63 vs 25 ± 11 μmol × kg-1 × min-1 in controls). With glucose infusion, muscle pain decreased and average heart rate during exercise dropped in both patients from 124 to 119 bpm and 138 to 119 bpm. We demonstrate that exercise intolerance in MADD-patients relates to an inability to increase fat oxidation appropriately during exercise, which is compensated partially by an increase in carbohydrate metabolism.