Sexual selection is responsible for much of the spectacular natural diversity of mating traits. It is unclear, however, how this powerful evolutionary force affects the evolution of traits unrelated to mating. Four recent theoretical studies have argued that sexual selection might increase the rate of adaptation, but each relies on the assumption of a substantial positive covariance between male condition (non-mating fitness) and display. Here we demonstrate, with an explicit genetic model, that sexual selection itself can easily lead to the evolution and maintenance of this covariance. This process occurs through the evolution of conditiondependent male display and the resultant transfer of genetic variance for condition into variance in male display. We also track the effect of the covariance between condition and display on the rate of adaptation. Our results demonstrate a powerful synergy between natural and sexual selection that can elevate population mean fitness. Moreover, this synergy can greatly accelerate the rate of adaptation, making the feedback between natural and sexual selection a particularly potent force in changing environments. This has important implications for several key evolutionary processes, including the evolution of sex, sexual conflict and speciation.
Almost 20 years after the development of models of malaria pathogenesis began, we are beyond the 'proof-of-concept' phase and these models are no longer abstract mathematical exercises. They have refined our knowledge of within-host processes, and have brought insights that could not easily have been obtained from experimentation alone. There is much potential that remains to be realized, however, both in terms of informing the design of interventions and health policy, and in terms of addressing lingering questions about the basic biology of malaria. Recent research has begun to iterate theory and data in a much more comprehensive way, and the use of statistical techniques for model fitting and comparison offers a promising approach for providing a quantitative understanding of the pathogenesis of such a complex disease.
Most theory on the evolution of virulence is based on a game‐theoretic approach. One potential shortcoming of this approach is that it does not allow the prediction of the evolutionary dynamics of virulence. Such dynamics are of interest for several reasons: for experimental tests of theory, for the development of useful virulence management protocols, and for understanding virulence evolution in situations where the epidemiological dynamics never reach equilibrium and/or when evolutionary change occurs on a timescale comparable to that of the epidemiological dynamics. Here we present a general theory similar to that of quantitative genetics in evolutionary biology that allows for the easy construction of models that include both within‐host mutation as well as superinfection and that is capable of predicting both the short‐ and long‐term evolution of virulence. We illustrate the generality and intuitive appeal of the theory through a series of examples showing how it can lead to transparent interpretations of the selective forces governing virulence evolution. It also leads to novel predictions that are not possible using the game‐theoretic approach. The general theory can be used to model the evolution of other pathogen traits as well.
The prevailing viewpoint in the study of sperm competition is that male sperm-allocation strategies evolve in response to the degree of sperm competition an ejaculate can expect to experience within a given mating. If males cannot assess the degree of sperm competition their ejaculate will face and/or they are unable to facultatively adjust sperm investment in response to perceived levels of competition, high sperm allocation (per mating) is predicted to evolve in the context of high sperm competition. An implicit assumption of the framework used to derive this result is that the degree of sperm competition is unaffected by changes in sperm-allocation strategies. We present theory based on an alternative perspective, in which the degree of sperm competition and the sperm-allocation strategy are coupled traits that coevolve together. Our rationale is that the pattern of sperm allocation in the population will, in part, determine the level of sperm competition by affecting the number of ejaculates per female in the population. In this setting, evolution in sperm-allocation strategies is driven by changes in underlying environmental parameters that influence both the degree of sperm competition and sperm allocation. This change in perspective leads to predictions that are qualitatively different from those of previous theory.
Existing optimality models of propagule size and number are not appropriate for many organisms. First, existing models assume a monotonically increasing offspring fitness/propagule size relationship. However, offspring survival during certain stages may decrease with increasing propagule size, generating a peaked offspring fitness/propagule size function (e.g., egg size in oxygen‐limited aquatic environments). Second, existing models typically do not consider maternal effects on total reproductive output and the expression of offspring survival/propagule size relationships. However, larger females often have greater total egg production and may provide better habitats for their offspring. We develop a specific optimality model that incorporates these effects and test its predictions using data from salmonid fishes. We then outline a general model without assuming specific functional forms and test its predictions using data from freshwater fishes. Our theoretical and empirical results illustrate that, when offspring survival is negatively correlated with propagule size, optimal propagule size is larger in better habitats. When larger females provide better habitats, their optimal propagule size is larger. Nevertheless, propagule number should increase more rapidly than propagule size for a given increase in maternal size. In the absence of density dependence, females with greater relative reproductive output (i.e., for a given body size) should produce more but not larger propagules.