Introduction One of the ways that climate change manifest itself is through temperature changes. Though the Oti River basin has been grappling with drought incidents, there has been little or no emphasis on analyzing temperature fluctuations in the basin. This study aimed to analyze the mean annual and seasonal temperature for the observed (1981–2010) and future periods (2021–2050) over the Oti River basin. Methods Historical data were obtained from meteorological stations and the National Aeronautics and Space Administration Prediction of Worldwide Energy Resources (NASA POWER). Data quality assessment was conducted, and the NASA POWER temperature was validated against the stations' temperature. Ensemble of eight models acquired from the Coordinated Regional Climate Downscaling Experiment (CORDEX–Africa) under two Representative Concentration Pathways (RCP4.5 and RCP8.5), were used for the future projection. The mean annual and seasonal temperatures were analyzed for 1981–2010 and 2021–2050 (under RCPs 4.5 and 8.5 scenarios). The Modified Mann–Kendall test was used for trend analysis at 5% significant level. Results and discussion In the near-future, temperature is anticipated to increase at the mean monthly scale in the ranges of +0.88°C in October to +2.65°C in January under the RCP4.5 scenario, while the RCP8.5 predicts increases between +2.71°C in July and +6.48°C in January. The annual mean temperature change for the entire basin is projected at +1.47°C (RCP4.5) and +4.2°C (RCP8.5). For the rainy season period, the RCP4.5 projects annual mean temperature changes in the ranges of −0.72°C and +1.52°C while the RCP8.5 predicts changes between +1.06°C and +4.45°C. Concerning the dry season period, the anticipated changes in the annual mean temperature under the RCP4.5 would range from −0.43°C to +2.78°C whereas that of RCP8.5 would be between +1.97°C and 7.25°C. The Modified Mann–Kendall test revealed significantly increasing trends for temperature projections in the basin under both the RCPs 4.5 and 8.5 in the basin. The study provides significant contribution to the comprehension of temperature patterns in time and space which is necessary for the sustenance of rainfed agriculture and water resources within the basin.
Pra River Basin, Ghana. The study modelled the changes in water yield using regional, sub-regional and local climate conditions from modelling outputs at spatial resolutions of 44 km, 12 km and 0.002 km respectively to drive the Integrated Valuation of Ecosystem Services and Trade-offs model at three time periods of land use land cover (LULC). Changes in historical water yield (simulated for 1986, 2002 & 2018 LULC using the mean climatic parameters from 1981-2010) and future scenario (simulated for 2018 LULC using the mean climatic parameters from 2020-2049) for annual, seasonal and monthly periods were assessed. The results show that future annual water yield could change by -46%, -48%, +44% and -35% under the regional, sub-regional, local and ensemble mean of the climate scenarios respectively. Seasonal water yield from the ensemble mean of the future climate scenario was projected to decrease between 2-16 mm, with a mean decrease of 33.39% during the December–February season. There was no directional effect of spatial resolution on water yield. The future period could be impacted by both drought and flood. We recommend that re/afforestation should be encouraged to improve infiltration and reduce deforestation which was 2.27% per annum in the assessed period to prevent flood causing runoffs, while irrigation technology will help to improve resilience to drought.
This study investigated the perception of drought by cocoa farmers and explored the effectiveness of adaptive strategies (ASs) used in smallholding farms in the transboundary region between Ghana and Togo. Drought significantly threatens cocoa production in this region, affecting farmers’ livelihoods and cocoa supply chains. This study used a multistage sampling approach, which involved surveys with questionnaires administered to 330 cocoa farmers throughout the study area, along with on-site observations. Statistical analysis included binary logistic and Poisson regression models to explore the relationship between farmer socioeconomic characteristics and adaptation practices. The findings revealed that cocoa farmers in the region have a nuanced understanding of drought, attributed to changing climatic patterns and unsustainable land management practices such as deforestation. To mitigate its impacts, farmers employ a variety of ASs, including investment in farm management, soil management, and intercropping with crop diversification. Furthermore, socioeconomic factors, including age, formal education, household size, land tenure right, adaptation cost assessment, and an underestimation of self-efficacy, were shown to affect the choice in the AS. Among the ASs adopted, only farm management practices (weeding, pruning, fertilizer application, etc.) significantly improved the cocoa yield. This study contributes to understanding drought as a critical issue for cocoa farmers and the adaptation practices used by smallholder cocoa farmers. Given that among the strategies adopted, only farm management practices, also known as good agricultural practices (GAPs), significantly improves yield, this study recommends well-designed and innovative packages of sustainable farm management based on farm and owner characteristics. These include irrigation schemes, timely soil fertilizer monitoring and supply, and the provision of drought-resistant varieties along with technical itineraries. Additional interventions require drought emergency responses, with other factors such as education and financial support mechanisms expected to improve farmers’ timely decision-making to adapt and improve cocoa production resilience to drought episodes in international transboundary regions with complex governance structures.
Abstract Understanding rainwater dispersion in a spatiotemporal context is invaluable toward resourceful water management and a food-secure society. This study, therefore, assessed the variations in rainfall at a spatiotemporal scale in the Oti River Basin of West Africa for observed (1981–2010) and future periods (2021–2050) under the representative concentration pathways (RCPs) 4.5 and 8.5 emission scenarios. Rainfall data from meteorological stations and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) were used. The percentage changes in rainfall for the peak month as well as for rainy and dry seasons under the two climate scenarios were determined. The coefficient of variation (CV) and the standardized anomaly index (SAI) were used to assess annual variations in rainfall. In general, under both emission scenarios, rainfall is projected to decrease over the study area. However, the amount of rainfall during the peak month (August) for RCP4.5 and RCP8.5 could increase by 0.26 and 9.3%, respectively. The highest SAIs for the observed period were +1.58 (2009) and −2.29 (1983) with the latter showing a relationship with historic drought in the basin. The projected SAI under RCP4.5 and RCP8.5 indicated extremely wet (+2.12) and very wet (+1.91) periods for the years 2037 and 2028, respectively. The study provides relevant information and a chance to aid the design of innovative adaptation measures toward efficient water management and agricultural planning for the basin.