ZUSAMMENFASSUNG Gegenstand und Ziel Im Artikel werden Lücken und Herausforderungen der Kostenfolgenschätzung zu Kindeswohlgefährdung im SGB VIII und im Gesundheitssektor (SGB V) beschrieben, die für den Gesundheitssektor anhand von Berechnungen zu Daten gesetzlicher Krankenversicherungen illustriert werden. Material und Methoden Die Berechnungen basieren auf Abrechnungsdaten gesetzlicher Krankenversicherungen aus den Jahren 2010–2021 mit den ICD-10-Diagnosecodes T74.x, Y05, Y06.x, Y07.X, Z61, Z61.2, Z61.4, Z61.5, Z61.6, Z61.7 (ICD-10-GM), die Ereignisse im Kontext von Kindesmisshandlung betreffen. Ergebnisse Die Berechnung der Ein-Jahres-Prävalenz für Kindesmisshandlung zeigt einen Anstieg seit 2010, der für 2021 in 30038 auf die Bundesbevölkerung hoch gerechneten Fällen gipfelt, woraus sich als Annäherung Kosten 2021 im Umfang von rund 11 Mio. Euro ergeben. Im stationären Bereich jedoch wurde je erfasstem Jahr entweder kein oder höchstens ein Fall von Kindesmisshandlung dokumentiert. Schlussfolgerungen Bevölkerungsstudien weisen auf Prävalenzwerte durch Kindesmisshandlung in Deutschland im 2-stelligen Prozentbereich hin. Die Kosten von Kindesmisshandlung in Deutschland im Gesundheitssektor werden entsprechend durch mangelnde Erfassung – nicht nur im stationären Bereich – massiv unterschätzt; für den Kontext Kindes- und Jugendhilfe sind aufgrund fehlender Daten validen Berechnungen von Kostenfolgen nicht mal möglich. Klinische Relevanz Eine Verbesserung oder teils auch Schaffung der strukturellen Grundlagen zur Datenerfassung von Kostenfolgen von Kindesmisshandlung ist dringend notwendig. Schulungen können die Sensibilität von Fachpersonen im Gesundheitssektor für die Wichtigkeit der Dokumentation von Daten zur Kindesmisshandlung sowie deren standardisierte Erfassung steigern.
Background Quality improvement collaboratives (QICs) have facilitated cross-organizational knowledge exchange in health care. However, the local implementation of many quality improvement (QI) initiatives continues to fail, signaling a need to better understand the contributing factors. Organizational context, particularly the role of social networks in facilitating or hindering implementation within organizations, remains a potentially critical yet underexplored area to addressing this gap. Purpose We took a dynamic process perspective to understand how QI project managers’ social networks influence the local implementation of QI initiatives developed through QICs. Methodology We explored the case of a QIC by triangulating data from an online survey, semistructured interviews, and archival documents from 10 organizations. We divided implementation into four stages and employed qualitative text analysis to examine the relationship between three characteristics of network structure (degree centrality, network density, and betweenness centrality) and the progress of each QI initiative. Results The progress of QI initiatives varied considerably among organizations. The transition between stages was influenced by all three network characteristics to varying degrees, depending on the stage. Project managers whose QI initiatives progressed to advanced stages of implementation had formed ad hoc clusters of colleagues passionate about the initiatives. Conclusion Implementing QI initiatives appears to be facilitated by the formation of clusters of supportive individuals within organizations; this formation requires high betweenness centrality and high network density. Practice Implications Flexibly modifying specific network characteristics depending on the stage of implementation may help project managers advance their QI initiatives, achieving more uniform results from QICs.
Hospitals are increasingly pursuing specialization as a strategy to operate efficiently while delivering high-quality care. To date, however, evidence is lacking on whether hospital specialization has a consistent effect on patients' experience of care or whether different specialization characteristics influence how specialization works.This study investigates whether specialization characteristics, that is, the within-specialty concentration and the within-specialty urgency score, moderate the link between hospital specialization and patient experience of care.We use patient-reported and administrative data from German hospitals between 2014 and 2017, with orthopedic and trauma care as the research setting. Our sample consists of 157,458 patient observations nested within 483 hospitals. We apply random-intercept multilevel modeling.Our results indicate that the effect of specialization on patient experience of care (a) decreases as the within-specialty concentration increases and (b) increases as the within-specialty urgency score increases.This study provides novel insights into the specialization characteristics that make hospital specialization in orthopedic and trauma care particularly effective at improving patient experiences.Although specialization is gaining popularity as a strategy for pooling scarce resources and facilitating high-quality health care, hospital managers and policymakers should consider that certain characteristics of specialization can influence the way that specialization works and how effective it is in improving patient experiences. Within the scope of orthopedic and trauma care, our study suggests that a low concentration of diagnoses within a service area and a high average level of medical urgency make specialization particularly effective at improving patient experiences.