Autophagy, a self-degradative physiological process, is critical for homeostasis maintenance and energy source balancing in response to various stresses, including nutrient deprivation. It is a highly conserved catabolic process in eukaryotes and is indispensable for cell survival as it involves degradation of unessential or excessive components and their subsequent recycling as building blocks for the synthesis of necessary molecules. Although the dysregulation of autophagy has been reported to broadly contribute to various diseases, including cancers and neurodegenerative diseases, the molecular mechanisms underlying the epigenetic regulation of autophagy are poorly elucidated. Here, we report that the level of lysine demethylase 3B (KDM3B) increases in nutrient-deprived HCT116 cells, a colorectal carcinoma cell line, resulting in transcriptional activation of the autophagy-inducing genes. KDM3B was found to enhance the transcription by demethylating H3K9me2 on the promoter of these genes. Furthermore, we observed that the depletion of KDM3B inhibited the autophagic flux in HCT116 cells. Collectively, these data suggested the critical role of KDM3B in the regulation of autophagy-related genes via H3K9me2 demethylation and induction of autophagy in nutrient-starved HCT116 cells.
Abstract Recent studies have reported the ectopic expression of olfactory receptors (ORs) in non-olfactory tissues, however, their physiological roles were not well elucidated. ORs are expressed in and function in different types of cancers. Here, we identified that the H3K9me2 levels of several OR promoters decreased during differentiation in the HL-60, human myeloid leukaemia cell line, by all- trans -retinoic acid (ATRA). We found that the differential OR promoters H3K9me2 levels were regulated by G9a and LSD1, resulting in the decrease of OR s transcription during HL-60 differentiation. G9a and LSD1 could regulate the expression of OR s in several non-olfactory cells via the methylation and demethylation of H3K9me2. In addition, we demonstrated that knockdown of OR significantly reduced cell proliferation. Therefore, the epigenetic regulation of OR s transcription is critical for carcinogenesis.
Abstract Data derived from genomic and transcriptomic analyses have revealed that long noncoding RNAs (lncRNAs) have important roles in the transcriptional regulation of various genes. Recent studies have identified the mechanism underlying this function. To date, a variety of noncoding transcripts have been reported to function in conjunction with epigenetic regulator proteins. In this study, we investigated the function of linc00598 , which is transcribed by a genomic sequence on chromosome 13, downstream of FoxO1 and upstream of COG6 . Microarray analysis showed that linc00598 regulates the transcription of specific target genes, including those for cell cycle regulators. We discovered that linc00598 regulates CCND2 transcription through modulation of the transcriptional regulatory effect of FoxO1 on the CCND2 promoter. Moreover, we observed that knockdown of linc00598 induced G0/G1 cell cycle arrest and inhibited proliferation. These data indicate that linc00598 plays an important role in cell cycle regulation and proliferation through its ability to regulate the transcription of CCND2 .
Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expression of G9a along with transcription factor YY1 specifically represses UHRF1 transcription during TPA-mediated leukemia cell differentiation. Using ChIP analysis, we found that UHRF1 was among the transcriptionally silenced genes during leukemia cell differentiation. Using a DNA methylation profiling array, we discovered that the UHRF1 promoter was hypomethylated in samples from leukemia patients, further supporting its overexpression and oncogenic activity. Finally, we showed that G9a regulates UHRF1-mediated H3K23 ubiquitination and proper DNA replication maintenance. Therefore, we propose that H3K9 HMTase G9a is a specific epigenetic regulator of UHRF1.
Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Owing to the chemotherapy associated side effects and toxicity, it is necessary to find a new mechanism, which can identify new potential therapeutic targets at the molecular level. Here, we identified new target genes that are induced during the TPA-induced HL-60 cell differentiation by ChIP-seq and microarray data analysis. Using q-PCR and ChIP assay, we confirmed that the target genes including USP3, USP35, TCF4, and SGK1 are upregulated during TPA-mediated HL-60 cell differentiation. Levels of USP3, one of the deubiquitinating enzymes (DUBs), increased by TPA treatment, resulting in the reduction of H2AK119ub levels. In addition, we revealed that depletion of USP3 inhibits TPA-mediated leukemia cell differentiation q-PCR and FACS analysis. Taken together, our data indicate that USP3 promotes TPA-mediated leukemia cell differentiation via regulating H2AK119ub levels.
The oncogene protein DEK is an abundant and ubiquitous nuclear protein with implications in acute myelogenous leukemia, as translocation which results in the formation of a DEK-CAN fusion protein. In a previous study, we have identified that DEK negatively regulated peroxiredoxin 6 (Prdx 6) transcription synergistically with the p65 subunit of NF-κB. In this study, we further investigated DEK-mediated transcriptional regulation of Prdx 6 during leukemia cell differentiation. Using Chromatin Immunoprecipitation analysis and Prdx 6 reporter assays, we found that DEK operated as a negative regulator of Prdx 6 transcription during leukemia cell differentiation. DEK was highly expressed and recruited to Prdx 6 promoter along with p65 and repressed transcription after leukemia cell differentiation.
The human myeloid leukemia cell line HL-60 differentiate into monocytes following treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the mechanism underlying the differentiation of these cells in response to TPA has not been fully elucidated. In this study, we performed ChIP-seq profiling of RNA Pol II, HDAC2, Acetyl H3 (AcH3), and H3K27me3 and analyzed differential chromatin state changes during TPA-induced differentiation of HL-60 cells. We focused on atypically active genes, which showed enhanced H3 acetylation despite increased HDAC2 recruitment. We found that HDAC2 positively regulates the expression of these genes in a histone deacetylase activity-independent manner. HDAC2 interacted with and recruited paired box 5 (PAX5) to the promoters of the target genes and regulated HL-60 cell differentiation by PAX5-mediated gene activation. Taken together, these data elucidated the specific-chromatin status during HL-60 cell differentiation following TPA exposure and suggested that HDAC2 can activate transcription of certain genes through interactions with PAX5 in a deacetylase activity-independent pathway.