Logging data are measurements of physical properties of the formation surrounding a borehole, acquired in situ after completion of coring (wireline logging) or during drilling (Logging-While-Drilling, LWD). The range of data (resistivity, gamma radiation, velocity, density, borehole images,…) in any hole depends on the scientific objectives and operational constraints.
Logging data are measurements of physical properties of the formation surrounding a borehole, acquired in situ after completion of coring (wireline logging) or during drilling (Logging-While-Drilling, LWD). The range of data (resistivity, gamma radiation, velocity, density, borehole images,…) in any hole depends on the scientific objectives and operational constraints.
Abstract We present a detailed analysis of the seasonal distribution, size, morphological variability, and geochemistry of co‐occurring pink and white chromotypes of Globigerinoides ruber from a high‐resolution (1–2 weeks) and long‐running sediment trap time series in the northern Gulf of Mexico. We find no difference in the seasonal flux of the two chromotypes. Although flux of G. ruber is consistently lowest in winter, the flux‐weighted signal exported to marine sediments represents mean annual conditions in the surface mixed layer. We observe the same morphological diversity among pink specimens of G. ruber as white. Comparison of the oxygen and carbon isotopic composition (δ 18 O and δ 13 C) of two morphotypes ( sensu stricto and sensu lato ) of pink G. ruber reveals the isotopes to be indistinguishable. The test size distribution within the population varies seasonally, with the abundance of large individuals increasing (decreasing) with increasing (decreasing) sea surface temperature. We find no systematic offsets in the Mg/Ca and δ 18 O of co‐occurring pink and white G. ruber . The sediment trap data set shows that the Mg/Ca‐temperature sensitivity for both chromotypes is much lower than the canonical 9%/°C, which can likely be attributed to the secondary influence of both salinity and pH on foraminiferal Mg/Ca. Using paired Mg/Ca and δ 18 O, we evaluate the performance of a suite of published equations for calculating sea surface temperature, sea surface salinity, and isotopic composition of seawater (δ 18 O sw ), including a new salinity‐δ 18 O sw relationship for the northern Gulf of Mexico from water column observations.
Water that forms the Florida Current, and eventually the Gulf Stream, coalesces in the Caribbean from both subtropical and equatorial sources. The equatorial sources are made up of, in part, South Atlantic water moving northward and compensating for southward flow at depth related to meridional overturning circulation. Subtropical surface water contains relatively high amounts of radiocarbon ({sup 14}C), whereas equatorial waters are influenced by the upwelling of low {sup 14}C water and have relatively low concentrations of {sup 14}C. We use a 250-year record of {Delta}{sup 14}C in a coral from southwestern Puerto Rico along with previously published coral {Delta}{sup 14}C records as tracers of subtropical and equatorial water mixing in the northern Caribbean. Data generated in this study and from other studies indicate that the influence of either of the two water masses can change considerably on interannual to interdecadal time scales. Variability due to ocean dynamics in this region is large relative to variability caused by atmospheric {sup 14}C changes, thus masking the Suess effect at this site. A mixing model produced using coral {Delta}{sup 14}C illustrates the time varying proportion of equatorial versus subtropical waters in the northern Caribbean between 1963 and 1983. The results of the model are consistent with linkages between multidecadal thermal variability in the North Atlantic and meridional overturning circulation. Ekman transport changes related to tradewind variability are proposed as a possible mechanism to explain the observed switches between relatively low and relatively high {Delta}{sup 14}C values in the coral radiocarbon records.